ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИРКУТСКИЙ ИНСТИТУТ ХИМИИ ИМ. А.Е. ФАВОРСКОГО СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

БОРОДИНА

Татьяна Николаевна

СТЭКИНГ-ВЗАИМОДЕЙСТВИЯ В НОВЫХ ПРОИЗВОДНЫХ СУЛЬФОНАМИДОВ, ИХ МЕТАЛЛОКОМПЛЕКСАХ И КООРДИНАЦИОННЫХ ПОЛИМЕРАХ

02.00.03 - органическая химия

02.00.04 – физическая химия

Диссертация на соискание ученой степени

кандидата химических наук

Научный руководитель:

кандидат химических наук

Смирнов Владимир Ильич

Иркутск 2020

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
ГЛАВА 1. СТЭКИНГ-ВЗАИМОДЕЙСТВИЯ (Литературный обзор)	6
1.1. Невалентные внутри- и межмолекулярные взаимодействия	6
1.2. Квантово-химические расчеты невалентных стэкинг-взаимодействий, оценка	
энергии л-стэкинга	10
1.3. Сульфонамиды и невалентные внутримолекулярные взаимодействия	13
1.4. Заключение к литературному обзору	21
ГЛАВА 2. ИЗУЧЕНИЕ СТЭКИНГ-ВЗАИМОДЕЙСТВИЙ МЕТОДАМИ РСА И КВАНТОЕ	ЮЙ
ХИМИИ (Обсуждение результатов)	22
2.1. Гетероциклические производные сульфонамидов как перспективные	
лиганды	22
2.1.1. Молекулярная структура перспективных лигандов	22
2.1.2. QTAIM-анализ топологических данных перспективных лигандов	33
2.1.3. Кристаллическая структура перспективных лигандов	40
2.2. Производные имидазо[2,1- <i>b</i>][1,3]тиазол2-ил)бензолсульфонамидов в качестве	
металлокомплексов	59
2.2.1. Молекулярная структура металлокомплексов	59
2.2.2. QTAIM-анализ топологических данных металлокомплексов	64
2.2.3. Кристаллическая структура металлокомплексов	67
2.3. Сульфонамидные производные [1,3]тиазоло[3,2-а]бензимидазолов и имидазо[2,	,1-
<i>b</i>][1,3]тиазолов в качестве координационных полимеров	71
2.3.1. Молекулярная структура координационных полимеров	71
2.3.2. QTAIM-анализ топологических данных координационных	
полимеров	76
2.3.3. Кристаллическая структура координационных полимеров	78
2.3.4. Заключение	84
ГЛАВА З. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	86
3.1. Методики получения новых гетероциклических производных сульфонамидов	86
3.2. Результаты физико-химических методов анализа	91
3.3. Данные экспериментов РСА	95
3.4. Квантово-химические расчеты	150
ВЫВОДЫ	151
ПРИЛОЖЕНИЕ	152
СПИСОК ЛИТЕРАТУРЫ	159

ВВЕДЕНИЕ

Актуальность работы. Представление о валентной связи является основой для теории химического строения вещества. Очевидно, что с помощью только валентных связей невозможно описать все многообразие существующих внутримолекулярных взаимодействий. Помимо химических связей с энергией, в среднем колеблющейся от 10 до 200 ккал/мол, существуют энергетически более слабые внутримолекулярные взаимодействия, такие как: водородные связи, π- и t-стэкинг - идентифицировать которые обычными спектральными методами анализа сложно, а порой и невозможно, и которые требуют дополнительных специальных исследований в каждом отдельном случае.

Рентгеноструктурный анализ (РСА) дает информацию как о молекулярной структуре отдельной молекулы, так и о кристалле в целом. Эта информация полезна и для практических целей (пополнение кристаллографической базы данных), и для построения теоретических моделей (например, программа USPEX Артема Оганова). С точки зрения построения кристаллической структуры соединений, содержащих ароматические и полиароматические фрагменты, основополагающими являются невалентные внутри- и межмолекулярные стэкингвзаимодействия, которые являются специальным случаем Ван-дер-Ваальсовых контактов и, несомненно, представляют интерес для прогнозирования свойств молекул и кристаллов. Известно, насколько важную свойств органических молекул роль для имеют внутримолекулярные невалентные π-π-взаимодействия, но проявления таких взаимодействий немногочисленны и мало изучены в настоящее время.

Соединения сульфонамидного ряда представляют огромную медикаментозную значимость для современной медицины. На основе производных сульфонамидов созданы различные препараты: противодиабетические [1] и противомикробные [1-2], диуретики и антиконвульсанты [3], противомигреневые и анальгетики [4], противоопухолевые агенты [5], ингибиторы ВИЧ [6] и ферментов [7-9]. Изучение структурных и конформационных особенностей сульфонамидной группы имеет ключевое значение для понимания и прогнозирования свойств новых производных сульфонамидов. С этим связано появление публикаций, в которых сообщается о структурных особенностях соединений, содержащих сульфонамидную группу [10-13]. Несмотря на имеющийся большой задел по производным сульфонамидов, практически нет исследований внутримолекулярных π - π -взаимодействий данного класса соединений, которые, безусловно, требуют дальнейшего развития и изучения.

Исследования, проведенные в рамках настоящей диссертационной работы, выполнены в соответствии с планом НИОКТР ФГБУН Иркутского института химии им. А.Е. Фаворского СО РАН по теме: «Структурные исследования новых гетероатомных и элементоорганических

3

соединений по данным современных методов спектроскопии и квантовой химии», номер государственной регистрации АААА-А1611611210009-5.

Цель работы. Исследование слабых внутри- и межмолекулярных стэкингвзаимодействий в новых представителях арилсульфониламинозамещенных производных имидазо[2,1-*b*]тиазола, тиазоло[3,2-*a*]бензимидазола, имидазо[1,2-*a*]пиридина, а также металлокомплексах и координационных полимерах на их основе.

Для достижения поставленной цели определены следующие задачи:

- исследование методом РСА особенностей пространственного строения новых перспективных лигандов сульфонамидового ряда, их металлокомплексов и координационных полимеров;
- выявление особенностей внутримолекулярных взаимодействий на основе данных РСА и QTAIM-анализа;
- теоретическое исследование стереоэлектронного строения с опорой на распределение электронной плотности в PCA эксперименте;
- оценка энергии стэкинг-взаимодействий.

Научная новизна и практическая значимость. Впервые методом РСА установлена структура десяти новых производных сульфонамидов, трех координационных полимеров и двух металлокомплексов на их основе. Объём структурной информации, полученный в работе, дополнит международный Кэмбриджский Кристаллографический Центр Данных (ССDС).

Впервые установлено, что наряду с «открытыми» системами, где заместители пространственно расположены так, что удалены друг от друга, существуют «закрытые» системы, обусловленные эффективным внутримолекулярным π-стэкингом и компактным расположением фрагментов.

Экспериментально доказано, что ароматический заместитель участвует в π-стэкинге только в том случае, когда находится в положении 2 гетероциклического остова производных сульфонамидов.

Показано, что природа заместителя не являются единственным определяющим фактором, влияющим на π-стэкинг-взаимодействие. Необходимо учитывать ориентацию заместителя, а также его межмолекулярные контакты.

Установлено, что только в металлокомплексных соединениях и координационном полимере $[N-(2-\phi \text{енил}[1,3]\text{тиазоло}[3,2-a]$ бензимидазол-3-ил)бензолсульфонамидато- $\kappa^2 N, O$] натрия наряду с внутримолекулярным π -стэкингом, реализуется межмолекулярный π -стэкинг.

Впервые для данного класса соединений теоретическими методами оценены энергии тетрельного, халькогенового, пниктогенового взаимодействий и t-стэкинга на основании величины плотности потенциальной энергии в связевых критических точках (3, -1).

Степень достоверности результатов проведенных исследований. Полученные теоретические и экспериментальные данные достоверны, выводы объективны и научно обоснованы. Диссертация выполнена на хорошем научном уровне с привлечением метода рентгеноструктурного анализа, современных квантово-химических методов расчета (DFT) и топологического анализа DORI.

Личный вклад автора. Автором выполнена вся экспериментальная работа, проведены квантово-химические расчеты. Автор самостоятельно осуществлял планирование, организацию и интерпретацию экспериментов, принимал непосредственное участие в обсуждении полученных результатов, оформлении статей и тезисов докладов, диссертации, автореферата и формулировки выводов.

Апробация работы и публикации. По материалам диссертационной работы опубликовано 3 статьи в ведущих отечественных и международных журналах, а также представлено 4 доклада на международных и всероссийских конференциях.

Результаты работы опубликованы в журналах: Arkivoc, ЖОрХ, Chemistry Select.

Фрагменты работы представлены на Международной объединенной конференции по органической химии «Байкальские чтения – 2017» г. Иркутск, 2017; Всероссийской молодёжной школе-конференции «Актуальные проблемы органической химии – 2018» пос. Шерегеш, 2018; школе-конференции молодых учёных с международным участием «VI Научные чтения, посвященные памяти академика А.Е. Фаворского» г. Иркутск, 2020.

Объём и структура работы. Диссертация изложена на 171 странице машинописного текста и включает следующие разделы: введение; литературный обзор, посвящённый невалентным взаимодействиям на примере производных сульфонамидов, выбору теоретического метода для анализа распределения электронной плотности и оценке энергии внутримолекулярных взаимодействий; обсуждение результатов собственных исследований; экспериментальную часть; выводы; приложение и список литературы из 142 наименований.

ГЛАВА 1. СТЭКИНГ-ВЗАИМОДЕЙСТВИЯ (Литературный обзор) 1.1. Невалентные внутри- и межмолекулярные взаимодействия

Аттрактивное взаимодействие между π-системами изучается больше полувека. Такие взаимодействия ответственны за двойную спираль ДНК [14], внедрение лекарств в ДНК [14, 15], упаковку ароматических молекул в кристаллах [16], третичную структуру белков [17], конформационные предпочтения полиароматических макроциклов [18], агрегацию порфиринов [19, 20] и многое другое.

Хантер и Сандерс представили простую модель *п*-*п*-взаимодействия [21]:

 $E_{\text{полн}} = E_{\text{эл.ст.}} + E_{\text{индукц.}} + E_{\text{дисперс.}} + E_{\text{репульсивн.}}$ (1.1)

Уравнение (1.1) выполняется как для внутримолекулярных, так и для межмолекулярных взаимодействий. Основной вклад в π - π -взаимодействие вносит электростатическое и Ван-дер-Ваальсово взаимодействие, индукционное и дисперсионное будут давать поправки второго порядка [22-24]. Для межатомных расстояний между π -системами больше чем 3.4Å Ван-дер-Ваальсово взаимодействие носит аттрактивный характер [23, 24]. Электростатическая составляющая π - π -взаимодействия чрезвычайно редко вызывает возмущение видимой области спектра электронного поглощения обоих хромофоров, что свидетельствует о том, что молекулярные орбитали не возмущены [25-29].

Хантер и Сандрс [21] предложили модель для ароматических взаимодействий, где ароматическое кольцо было описано как «положительно заряженный σ -каркас между двумя областями отрицательно заряженной π -электронной плотности». Авторы также ввели графическое представление условий, при которых π - π -взаимодействие будет носить репульсивный или аттрактивный характер (Рис.1.1). Вращение от 0° до 90°, при малых смещениях, приводит к притяжению. Вращение от 90° до 180°, также при малых смещениях, усиливает репульсивную составляющую. Такое расположение принято называть «фронт-фронт» или «лицом к лицу». Аттрактивный характер будет в том случае, если π -облака располагаются со смещением или в положении «край-фронт».

Рисунок 1.1. Аттрактивный или репульсивный характер *π*-*π*-взаимодействия в зависимости от взаимной ориентации *π*-облаков.

Этими же авторами [29] введен ряд правил для неполяризованных *π*-сопряженных систем:

- *π*-*π*-отталкивание доминирует для «фронт-фронт» *π*-сопряженных систем;
- *π*-σ-притяжение доминирует для «край-фронт» *π*-сопряженных систем;
- *π*-σ-притяжение доминирует для «фронт-фронт» смещенных систем;
- электростатическое взаимодействие преобладает между заряженными атомами;
- благоприятствуют взаимодействию с нейтральными или слабо поляризованными фрагментами следующие типы π-поляризации:
 - π-дефицитный атом в «фронт-фронт» ориентации;
 - π-дефицитный атом в вертикальной Т- или «краевой» ориентации;
 - *π*-избыточный атом в горизонтальной Т- или «краевой» ориентации.
- благоприятствуют взаимодействию с нейтральными или слабо поляризованными фрагментами следующие типы σ-поляризации:
 - а) положительно заряженный атом во «фронт-фронт» расположении;
 - б) положительно заряженный атом в вертикальной Т- или «краевой» ориентации;
 - в) отрицательно заряженный атом в «краевой» ориентации.

7

Известно, что параллельно π - π -сопряженные молекулы обладают высокой степенью переноса заряда [30]. В этом случае комплексы с переносом заряда стабилизируют не ковалентные взаимодействия. В основе этого факта лежит смешивание основного состояния с зарядово-разделенным состоянием, что возбужденным легко определяется по характеристичным полосам в видимой области УФ-спектра поглощения. Кроме этого, как правило, такие соединения имеют выраженную окраску. Ряд слабых, не ковалентных взаимодействий, таких как водородные связи [31], галогенные [32], халькогенные [33, 34], пниктогенные [35, 36], тетрельные [37] взаимодействия, аэрогенные связи [38, 39], π - π - [40, 41] и диполь-дипольные [42] взаимодействия были идентифицированы и изучены методами РСА и квантовой химии [33, 43, 44].

Дезиражу и Гавезотти [16, 46] охарактеризовали в своих работах основные возможные типы упаковки π-сопряженных систем (Рис. 1.2). Ими введена следующая классификация ориентации ненасыщенных фрагментов: «фронт-фронт», край к краю (параллельно смещенные) и край-фронт. Для соединений, обладающих хорошими свойствами переноса заряда, характерно π-π-взаимодействие «фронт-фронт». Большинство простых ароматических молекул, таких как бензол, нафтален, антрацен, фенантрен упаковываются в виде «ёлочки» или «сэндвича» (пирен, перилен, кватеррилен и т.д.). В работах Багрянской И.Ю. [47] для полигетероатомных производных ароматических соединений выявлены общие закономерности супрамолекулярной организации кристаллических упаковок посредством стэкингвзаимодействий.

Встраивание гетероатомов или функциональных групп в исходные ароматические молекулы приводит к изменению способности переносить заряд внутри системы. Галогенирование, алкилирование или аррилирование в пери-положении линейных аценов меняет кристаллическую упаковку ёлочкой на различные мотивы π -стэкинга [48]. Ацилирование/бензоирование приводит к уменьшению/увеличению расстояния π - π -стэкинга. Изменение силы π - π -взаимодействия отражается в эмиссионных спектрах, приводя к красному или голубому смещению. Формирование невалентных взаимодействий между разными частями молекулы или фрагментами соседних молекул приводит к изменению электронной плотности и служит толчком для изменения кристаллической упаковки [49]. Изменение электронного или экситонного связывания вследствие изменения угла соскальзывания (θ) или угла вращения (α - угол между длинной осью сопряженных хромофоров,) могут иметь важное значение на степень переноса заряда и оптические свойства системы в целом [50-53]. Крестообразное расположение молекул приводит к минимальному экситонному связыванию, в результате такие системы проявляют сильные люминесцентные свойства [54].

8

Краевая или Т-образная геометрия

Рисунок 1.2. Виды невалентных стэкинг-взаимодействий.

Ма с соавторами [51], впервые привел экспериментальные доказательства на примере транс-2,5-дифенил-1,4-дистирилбензена, что крестообразная архитектура кристаллов обладает сильной флюоресценцией в области голубых длин волн и значительным переносом заряда. В работе [50] показано, что крестообразно-стыкованные колонны образуют выпуклые димеры, обусловленные *π*-*π*-взаимодействием и вогнутые димеры, сформированные за счет С[…]Вг и Вг[…]О взаимодействий. Нековалентные взаимодействия С-Н[…]О и С-Н[…]*π* типа, управляют 2D архитектурой в кристаллическом 1,7-дибромперилен-3,4,9,10-тетракарбоксилик тетрабутил эфир и четырехбромированный перилен-3,4,9,10-тетракарбоксилик тетрабутил эфир и четырехбромированный 1,6,7,12-тетрабромоперилен-3,4,9,10-тетракарбоксилик тетрабутил эфир образуют Х- и J-типы упаковки в монокристаллической фазе.

1.2. Квантово-химические расчеты невалентных стэкинг-взаимодействий, оценка энергии π-стэкинга

В большинстве случаев, выбор метода и базиса квантово-химических расчетов представляет из себя достаточно сложную задачу. Требуется найти компромисс между качеством расчета и разумными временными затратами, необходимыми для этого. В данном случае, удалось избежать трудоемкого процесса выбора метода и базиса по одной причине – структурная информация получена из эксперимента и для теоретического описания электронной составляющей был выбран наиболее широко применяемый и хорошо себя зарекомендовавший метод B3LYP [55-57] с базисом 6-311+G(d) [58]. В силу того, что объекты исследования содержат элементы не дальше третьего периода, мы ограничились только *d* поляризационными функциями и диффузными функциями на не водородных атомах. При сохранении достаточно хорошего качества расчета, время расчета остается вполне разумным. Расчеты проводились с помощью пакета программ Gaussian 09 [59]. Расчет проводился на основе геометрических параметров, получена волновая функция, которая в дальнейшем была использована для топологического анализа QTAIM [60] в программе AIMALL [61]. DORI-анализ был проведен с использованием пакета программ Multiwfn [62].

Сложность изучения слабых невалентных взаимодействий заключается в том, что нет отработанной методики и специализированных физико-химических методов исследования данных взаимодействий. Несмотря на востребованность в знаниях об этих контактах, большинство работ посвящено теоретическому изучению данного вопроса. Попытка хоть както восполнить данный пробел, привела нас к решению изучить данный вопрос методами РСА и квантовой химии. Выбор методов обусловлен тем, что РСА дает непосредственную информацию о расположении атомов в молекуле, а квантово-химический расчет позволяет теоретически рассмотреть возникающие в системе силы и оценить взаимодействие между атомами. Природа π-π взаимодействия - вопрос дискуссионный, одни авторы склонны считать что это электростатическое [63-65] взаимодействие, подобно водородной связи, другие склоняются к дисперсионным силам [64-69].

Энергия *π*-(t-)стэкинга по разным оценкам [63-65, 70-72] составляет менее 3 ккал/моль. В качестве дескрипторов, описывающих эти взаимодействия, можно взять различные эмпирические или теоретические характеристики. Необходимо проанализировать, какие из них лучше всего подходят в нашем случае. Так как энергия этих взаимодействий невелика и соизмерима по величине со слабыми водородными связями или Ван-дер-Ваальсовыми взаимодействиями, то логично использовать сходные подходы и дескрипторы для их описания. Так, для описания водородных связей часто используют уравнения, устанавливающие взаимосвязь между энергией и расстоянием. Например, уравнение (1.2) Липинкотта-Шредера [73, 74], уравнение (1.3) Грабовского [75] или уравнение (1.4) Мусина [76]. Если уравнение Липинкотта-Шредера (1.2) включает в себя и угловой фактор, то остальные уравнения ориентированы только на расстояние между взаимодействующими объектами. Подбор коэффициентов является определяющим, насколько то или иное уравнение будет описывать энергию взаимодействия. К сожалению, НИ одно ИЗ перечисленных уравнений удовлетворительно не описывает π -стэкинг. Все оценки получаются существенно завышенными. Получаемые значения, скорее характерны для умеренных и сильных водородных связей.

EHB(ϕ , r) = (-43.8 + 0.38 ϕ) exp [-5.1(r - 2.4)]	(1.2)
EHB(r) = 6111 exp (-3.6 r)	(1.3)
$EHB(r) = 5554000 \exp(-4.12 r)$	(1.4)

Среди уравнений, опирающихся на экспериментально определяемые величины, можно выделить уравнение (1.5) Шафера [77] (ЯМР хим. сдвиги) или уравнение (1.6) Говоруна [78-80] (ИК колебания). К сожалению, ни один из перечисленных экспериментальных способов изучения π - π -взаимодействия не способен надежно фиксировать и отражать изменения, происходящие во взаимодействующих π -системах.

$$EHB (\Delta \delta) = \Delta \delta + (0.4 \pm 0.2) \tag{1.5}$$

EHB $(\Delta v X - H) = 0.33 \sqrt{\Delta v X - H} - 40$ (1.6)

Поэтому, для оценки π-стэкинга остаются дескрипторы, получаемые из теоретических расчетов. Наиболее часто используемой характеристикой для оценки невалентных взаимодействий является плотность потенциальной энергии в связевой критической точке типа

11

(3,-1). Уравнение (1.7) Эспинозы [81] широко применимо, но зачастую дает завышенные оценки энергии взаимодействия.

$$E(V) = 0.5 \times |V|$$
 (1.7)

Тем не менее, оно может быть весьма перспективным для оценки наших взаимодействий. Другой характеристикой, полезной для оценки π -стэкинга, может оказаться значение электронной плотности ρ . Обобщенное уравнение (1.8) обсуждалось во множестве работ [82-87].

$$E_{\pi-\pi}(\rho^{BCP}) = A\rho^{BCP} + B \tag{1.8}$$

Уравнения различных авторов отличаются друг от друга коэффициентами A и B, определяющими особенности того или иного класса соединений. В нашем случае, ни одно из них не подходит. Значения энергий, рассчитанные по данной схеме также завышены. Наиболее реальные значения электронной плотности получаются при использовании уравнения (1.9) Афонина [86]:

$$E_{\pi,\pi}(\rho^{BCP}) = 191.4 \ \rho^{BCP} - 1.78 \tag{1.9}$$

Наклон прямой соответствует тенденции изменения величины электронной плотности, однако свободный коэффициент несколько велик, что при слабом π - π -взаимодействии становится доминирующим, и не отражает действительности. По мере накопления статистических данных, базируясь на уравнении Афонина, можно будет построить корреляционную зависимость специально для π - π -связанных систем. Главной привлекательной особенностью этого уравнения является то, что значения электронной плотности в критической точке можно будет не только рассчитывать, но и извлекать из эксперимента. При таком подходе появится экспериментальный репер для оценки величины π -стэкинга, что чрезвычайно важно для изучения такого рода взаимодействий. К полуколичественному методу оценки энергии π - π -взаимодействия, можно отнести метод DORI [88] (Density Overlap Region Indicator). Этот метод объединил метод ELF [89] (Electron Localization Function) и RDG [90] (Reduced Density Gradient) в одно целое [91], используя наглядное представление энергии того или иного взаимодействия в соответствии с цветовой шкалой (Рис. 1.3).

Рисунок 1.3. Энергетическая схема взаимодействий [86, 87].

Области, где происходит взаимодействие, характеризуются различной степенью деформации электронной плотности, поэтому можно анализировать различные типы взаимодействий без привязки к их природе (водородные связи, Ван-дер-Ваальсовы взаимодействия, π - и t-стэкинг). Метод DORI опробован на пропелланах, хорошо исследованных разными методами [92-97]. Результаты DORI-анализа были соотнесены с экспериментальными данными по анализу электронных плотностей [98-100]. Этот метод хорошо себя зарекомендовал при анализе органических полупроводников [101] и может быть использован для анализа π - и t-стэкинга в замещенных сульфонамидах, возможно, потенциальных прекурсоров для материалов молекулярной электроники.

1.3. Сульфонамиды и невалентные внутримолекулярные взаимодействия

Интерес к сульфонамидам как к классу терапевтических агентов возник с открытием первого антибиотика «Пронтозил». За ним последовали многочисленные исследования структурных модификаций молекулы сульфонамида, в результате чего были получены соединения, обладающие различными свойствами - антибактериальными, мочегонными, гипогликемическими и антигидроидными [102-104]. Среди исследуемых оказались сульфонамиды, демонстрирующие даже противоопухолевую или противовирусную активность in vitro и in vivo [103]. Появились исследования [105-107], доказывающие, что биологическая активность сульфонамидов является специфической и в большей степени зависит от конформационного состояния молекулы [108, 109].

Постоянное пополнение рентгеноструктурной базы данных позволяет проанализировать наиболее часто встречающиеся конформации молекул сульфонамида в кристаллах, а также оценить содержание конформеров. Анализ конформационных состояний представлен в работах Паркина и др. [110] и Брамелда и др. [111]

Так как молекулы сульфонамидов одновременно содержат атомы и донора, и акцептора, в кристалле они способны участвовать в образовании различных полиморфных форм [112, 113], комплексных соединений [114-116], разнообразных сокристаллов [117-119] и кристаллосольватов [120-122], а также самосборных органических трубчатых конструкций [123]. И именно поэтому сульфаниламиды представляют интерес, как с практической точки зрения при использовании их в качестве новых лекарственных соединений, так и в научном плане при исследовании их кристаллических структурных особенностей.

Так, Перловичем и соавторами методом рентгеновской дифракцией [124] определены кристаллические структуры десяти сульфонамидов методом рентгеновской дифракции. Авторами изучена конформационная гибкость мостика между двумя фенильными кольцами.

Рисунок 1.4. Вид модельной молекулы с нумерацией атомов и рассматриваемых углов. Для описания конформационных состояний (рис. 1.4), были введены три параметра (аналогично Паркину и др. [110]):

τ1 (∠C2C1S1N1) - угол между группой SO2 и фенильным фрагментом Ph1;

т2 (∠С7N1S1С1) - угол кручения, описывающий подвижность связи S1-N1,

τ3 (∠C12C7N1S1) - угол, который характеризует расположение второго фенильного кольца Ph2 относительно группы NH;

∠Ph1-Ph2 - угол между двумя фенильными кольцами (введен авторами дополнительно).

Высказано предположение, что угол т3 более восприимчив к структурным модификациям представленных в работе молекул сульфонамидов и вносит основной вклад в разворот между двумя фенильными кольцами. Кроме того, архитектура молекулярной упаковки выбранных

кристаллов была условно разделена на три разные группы, в зависимости от различия структуры и состава молекулярных слоев, которые можно выделить для большинства упаковок.

С целью установления структурных особенностей и роли хлорзамещения в изменении молекулярной конформации и кристаллической сборке сульфонамидов, авторами [125] был выполнен синтез двух арилсульфонамидных производных, отличающихся отсутствием или наличием двух Cl-заместителей в одном из фенильных фрагментов. Выяснилось, что замена двух атомов водорода во 2м и 5м положениях одного фенильного кольца атомами хлора существенно не влияет на изменение молекулярной конформации и межмолекулярной архитектуры в сравнении с незамещенным аналогом (Рис. 1.5).

Рисунок 1.5. Молекулярные структуры двух арилсульфонамидов в представлении атомов эллипсоидами тепловых колебаний с 25% вероятностью, ORTEP.

Оба арилсульфонамида, описанных в работе, имеют сходную молекулярную геометрию, отличающуюся конформационной гибкостью сульфонамидного мостика. Для замещенного арилсульфонамида имеет место небольшое вращение вокруг оси связи S-N, соединяющей бензольные кольца, если в качестве эталона рассматривают конформацию сульфонамидной группы незамещенного арилсульфонамида. Авторы уточняют, что угол около 90 градусов между плоскостями двух ароматических колец, рассматриваемых в работе производных арилсульфонамидов, является внутримолекулярной особенностью класса и наблюдается также в других родственных арилсульфонамидах. Отмечено, что обе структуры стабилизируются t-стэкинг и π -стэкинг-взаимодействиями между димерными парами рассматриваемых арилсульфонамидов.

Чохан и др. [126] приводят описание кристаллической и молекулярной структуры 4-{[(Е)-(5-бром-2-гидроксифенил)метилиден]амино}-N-(5-метил-1,2-оксазол-3ил)бензолсульфонамида (Рис. 1.6). Молекула соединения изогнута относительно атома S, угол кручения ∠C11S1N2C14 составляет -86,3(3)°.

Рисунок 1.6. Молекулярная структура бензолсульфонамида в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью, ORTEP.

Каждая пара молекул, рассматриваемого в работе бензолсульфонамида, дает межмолекулярные водородные контакты N-H[…]N с образованием димеров. Показано, что кристаллическая структура бензолсульфонамида стабилизируется π -стэкинг-взаимодействиями между плоскостями бензольных колец двух соседних молекул C1-C6 и C8-C13 с межцентровым расстоянием 3,625.(2)Å.

В рамках исследований влияния заместителей на структурные конформации арилсульфонамидов Чайтанья и др. [127] определили методом рентгеновской дифракции и охарактеризовали структурные особенности 4-Нитро-N-фенилбензолсульфонамида (Рис. 1.7). Показано, что молекула скручена по связи S-N с углом кручения ∠C1S2N1C7 61,9(3)°. Двугранный угол между ароматическими кольцами составляет 36,19(18)°. В работе [127] нет никакой информации о наличии или отсутствии межмолекулярного π-стэкинг-взаимодействия в кристаллической структуре 4-Нитро-N-фенилбензолсульфонамида. Для межмолекулярных взаимодействий имеется только информация о наличии водородной связи N-H[…]O, связывающей молекулы в цепочки вдоль оси *а* кристаллической решетки.

Рисунок 1.7. Молекулярная структура 4-Нитро-N-фенилбензолсульфонамида в представлении атомов эллипсоидами тепловых колебаний с 25% вероятностью, ORTEP.

Рентгеноструктурные исследования Розенцвейга и др. [128] показали,

что в твердом состоянии две молекулы сульфонамидного производного имидазопиримидина и две молекулы совместно кристаллизованного растворителя (метанола) связаны посредством

водородных связей (N₁₁-H^{...}O_{1W} и O_{1W}-H^{...}N₁₉), образуя центросимметричный димер. Интересно, что в каждой молекуле рассматриваемого сульфонамидного производного имидазопиримидина плоскости двух фенильных колец почти параллельны друг другу (угол между плоскостями равен 4,8°) и лежат на расстоянии примерно 3,3 Å (Рис. 1.8), что соответствует типичному π -стэкингу.

Рисунок 1.8. Стэкинг-взаимодействия и молекулярная структура имидазопиримидинового производного сульфонамида в представлении атомов эллипсоидами тепловых колебаний с 25% вероятностью, ORTEP.

Ранее теми же авторами [129] сообщалось о синтезе сульфонамидных производных имидазопиридинов схожего строения, что и имидазопиримидин, описанный в работе [128], но с заменой N-H-группы на N-Me-группу. Авторы посвятили работу только синтетической составляющей, используя рентгеноструктурный анализ лишь в качестве доказательства структуры полученных сульфонамидных производных имидазопиридинов и не рассматривая молекулярных и кристаллических особенностей соединений. Что, однако, является упущением, потому как в данных структурах также присутствуют стэкинг-взаимодействия (рис. 1.9). Но, при этом π -стэкинг-взаимодействия наблюдаются только в солевой форме сульфонамидного производного имидазопиридина (Рис. 1.9).

Рисунок 1.9. Стэкинг-взаимодействия и молекулярная структура имидазопиридинового производного сульфонамида в представлении атомов эллипсоидами тепловых колебаний с 25% вероятностью, ORTEP.

В работе [130] авторами описана молекулярная структура имидазо[2,1-*b*]тиазола (Рис. 1.10).

Рисунок 1.10. Стэкинг-взаимодействия и молекулярная структура имидазотиазольного производного сульфонамида в представлении атомов эллипсоидами тепловых колебаний с 25% вероятностью, ORTEP.

В кристаллической структуре рассмотренного соединения молекула имидазотиазола связана с молекулой растворителя. Ароматические фрагменты, связанное с сульфонамидной группой, 3,53Å практически параллельны, а расстояние между центроидами указывает на внутримолекулярное π-стэкинг-взаимодействие между ними (Рис. 16). Данные рентгеноструктурного анализа хорошо согласуются с теоретическими данными (МР2/6311++G**) [130]. Расстояние между кольцами лежит в пределах 3.1-3.2Å, обнаружены 2 связевые критические точки с электронной плотностью $\rho(r) = 7.8 \times 10^{-3} \text{ e}^{-3} \text{ и} 1.0 \times 10^{-2} \text{ e}^{-3} \text{ Å}^{-3}$.

Ли Фэй Ни и др. [131] синтезировали серию производных сульфонамидов, содержащих тиено[2,3-*d*]пиримидиноновые трициклические фрагменты, и оценили способность этих сульфонамидных производных стимулировать синтез меланина в мышиных клетках В16. В работе приведены данные рентгеноструктурного анализа двух представителей ряда тиено[2,3*d*]пиримидиноновых производных сульфонамидов, которые авторы использовали только как доказательство структуры вышеупомянутых сульфонамидов. Однако нами отмечено (Рис. 1.11), что для данных тиенопиримидиноновых производных сульфонамидов наблюдаются только внутримолекулярные не валентные халькогенные взаимодействия. Хотя приведенные в работе [131] тиенопиримидиноны имеют схожее строение с имидазопиридинами, имидазопиримидинами и имидазотиазолами, описанными выше [128-130].

Рисунок 1.11. Стэкинг-взаимодействия и молекулярная структура тиенопиримидинонового производного сульфонамида в представлении атомов эллипсоидами тепловых колебаний с 25% вероятностью, ORTEP.

В работе Юн-Чжоу Чжао и др. [132], посвященной только синтетической составляющей, структура пиррольного производного сульфонамида определена с помощью дифракции рентгеновских лучей и более никак не рассмотрена. Интересно отметить, что пиррольное кольцо в «основании» сульфонамида не дает ожидаемой структуры для формирования внутримолекулярного π-стэкинга (Рис. 1.12). Здесь можно говорить только о возможном внутримолекулярном t-стэкинг-взаимодействии между водородом Н9 пиррольного фрагмента и углеродом C17 Br-замещенного фенильного заместителя.

Рисунок 1.12. Стэкинг-взаимодействия и молекулярная структура пиррольного производного сульфонамида в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью, ORTEP.

Авторы [133] также посвящают свою работу синтетической части и не описывают ни молекулярной, ни кристаллической структуры полученных соединений. Однако анализ представленных данных, сделанный нами, свидельствует, что полностью замещенный пиррол дает возможность для реализации внутримолекулярного *π*-стэкинг-взаимодействия (Рис. 1.13).

Рисунок 1.13. Стэкинг-взаимодействия и молекулярная структура замещенных пиррольных производного сульфонамида в представлении атомов эллипсоидами тепловых колебаний с 25% вероятностью, ORTEP.

1.4. Заключение к литературному обзору

Поиск новых материалов для электронной промышленности и космической отрасли, синтез новых лекарственных препаратов и развитие фармакологии невозможно без глубокого понимания слабых взаимодействий. Именно слабые взаимодействия ответственны за процессы роста кристаллов, электропроводность органических молекул, фолдинг белка и взаимодействие рецепторов с лекарственными препаратами. Таким образом, изучение слабых невалентных внутримолекулярных взаимодействий, таких как *π*-стэкинг, в кристаллах органических соединений, а также теоретическая оценка энергий этих взаимодействий в настоящее время является весьма актуальной задачей.

ГЛАВА 2. ИЗУЧЕНИЕ СТЭКИНГ-ВЗАИМОДЕЙСТВИЙ МЕТОДАМИ РСА И КВАНТОВОЙ ХИМИИ (Обсуждение результатов)

2.1. Гетероциклические производные сульфонамидов как перспективные лиганды

2.1.1. Молекулярная структура перспективных лигандов

По данным РСА в соединениях (L1, L2) первого ряда (Табл. П. 1.1) атом серы S2 принимает форму искаженного тетраэдра. Валентные углы в пределах экспериментальных погрешностей близки: для L1 – [O1S2O2 121.4(2)°, C12S2O2 107.8(2)°, N3S2O2 105.5(2)°] и для L2 – [O1S2O2 120.4(1)°, C12S2O2 109.5(1)°, N3S2O2 105.1(1)°] (Рис.2.1) и соответствуют значениям, характерным для соединений с сульфонамидной группой [124-125].

Рисунок 2.1. Молекулярные структуры соединений L1 и L2 в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью, ORTEP.

Атом азота сульфонамидной группы для L1 и L2 плоско-тригональный ($\Sigma \angle N = 360.0(8)^{\circ}$ / 360.0(2)°). Бензимидазотиазольный фрагмент имеет плоское строение, выходы гетероатомов N1, N2 и S1 из плоскости C1C2C3C4C5 составляют: для L1 – [0.017Å, 0.034Å, 0.001Å] и для L2 – [0.006Å, 0.049Å, 0.010Å]. Плоскость фенильного заместителя C6-C11 находится под углом к плоскости бензимидазотиазольного фрагмента [45.93°, 46.50°] для L1, L2, соответственно. Напротив, плоскость C13C14C16C17 R-фенильного фрагмента C12-C17 практически параллельна плоскости C7C8C10C11 фенильного заместителя C6-C11, угол между плоскостями составляет 4.1° и 4.8° для L1, L2 соответственно. Следует отметить, что в R-фенильном фрагменте заместители - атом C1 в соединении L1 и атом углерода C22 метильной группы в соединении L2 - выходят из плоскости фенильного фрагмента C12-C17: для L2 выход атома C22 составляет 0.083Å, а для L1 выход C1 – 0.060Å.

Для исследуемых сульфонамидов, так же, как и для известных [110, 124-125], конформационные состояния, определяемые торсионными углами τ_1 , τ_2 , τ_3 , τ_4 , τ_5 зависят от подвижности сульфонамидного фрагмента (–C-S-N-C-) [124]. Угол τ_1 – угол между SO2-группой и фенильным фрагментом. Угол τ_2 – угол, определяющий ориентацию второго фенильного фрагмента относительно бензимидазотиазольного фрагмента. Угол τ_3 – угол, характеризующий ориентацию гетероцикла в исследуемых соединениях относительно сульфонамидного фрагмента. Угол τ_4 – угол, описывающий подвижность S-N связи. И угол τ_5 - угол между плоскостями фенильных фрагментов (Табл. 2.1) [110, 124].

Конформационным отличием молекулярных структур является взаимное расположение фенильных фрагментов, обусловленное изменением торсионных углов τ_1 и τ_2 . Для L1 значения торсионных углов τ_1 и τ_2 (C13C12S2N3 и C7C6C1C2) составляют 83.1(1)° и -36.6(2)°, соответственно и для L2 74.5(3)° и -45.9(4)°. Изменения торсионных углов, по-видимому, вызваны введением вместо метильного радикала тяжелого атома Cl, что приводит к изменению конформации фенильных фрагментов. Так для L1, содержащего атом Cl, характерна заслоненная конформация с латеральным смещением фенильных фрагментов Δd относительно друг друга на 1.55Å, а для L2, содержащего метильную группу, заторможенная конформация с латеральным смещением Δd 0.99Å (Рис. 2.2). Такое относительное расположение ароматических колец соответствует наиболее комфортному сопряжению их π -систем.

Рисунок 2.2. Конформации фенильных фрагментов в соединениях *a*) L1 и б) L2.

Для обеих конформаций реализуется внутримолекулярный *п*-стэкинг [134]. Расстояние (d) между центроидами C7C8C10C11 (Cg1) и C13C14C16C17 (Cg2) фенильных фрагментов C6-C11 и C12-C17 практически одинаковое и составляет для L1 и L2 d_{L1}=3.808Å и d_{L2}=3.693Å, соответственно (Рис. 2.3). Определяющим фактором π-стэкинг-взаимодействия является пространственная ориентация сульфонамидной Изменение группы. ориентации сульфонамидной группы отчетливо проявляется при сравнении молекулярных структур соединения L1 И сульфонамидного диметилированного производного 3-{[(4хлорфенил)сульфонил]метиламино}-1-метил-2-фенилимидазо[1,2-а]пиридин-1-иум иодида,

содержащего метильные группы при атоме азота сульфонамидного фрагмента,. При значениях практически 3-{[(4одинаковых валентных углов для хлорфенил)сульфонил]метиламино}-1-метил-2-фенилимидазо[1,2-а]пиридин-1-иум иодида торсионные углы сульфонилметиламинного фрагмента т₃ и т₄ (C21C13N11S8 и C5S8N11C13) составляют -100.8° и 123.7° [129]. И существенно отличаются от значений аналогичных торсионных углов сульфонамидной группы т₃ и т₄ (C1C2N3S2 и C12S2N3C2) -87.4(1)° и 96.18(9)°, -92.5(3)° и 74.3(2)° для соединений L1 и L2 соответственно. В результате замещение N-H на N-CH₃ приводит к изменению торсионных углов т₁ и т₂ (C6C5S8N11 и C27C22C21C13) 112.1° и -31.3° и, как следствие, существенно увеличивается угол между плоскостями фенильных фрагментов т₅ 33.28°, что и является причиной нарушения условий *π*-стэкинга между фенильными фрагментами.

Рисунок 2.3. Внутримолекулярный *π*-стэкинг между фенильными фрагментами C6-C11 и C12-C17 в соединениях *a*) L1 и *б*) L2.

Еще одной отличительной особенностью соединений L1 и L2 является наличие или отсутствие энантиомеров. Так (Рис. 2.4).

Рисунок 2.4. Энантиомеры имидазотиазолов (пространственное наложение двух молекул) *a*) L1 и б) L2.

Соединение L1 представляет из себя рацемат двух энантиомеров (в соотношении 1:1), в то время как соединение L2 представлено только одним пространственным изомером.

При замене бензимидазотиазольного фрагмента (L1, L2) на трифенилимидазотиазольный (перспективные лиганды второго ряда L4, L5, L6) атом серы S2 (Рис. 2.5) сохраняет форму искаженного тетраэдра. Валентные углы в пределах экспериментальных погрешностей близки: для L4 – [O2S2O1 121.59(7)°, C12S2O1 106.83(6)°, N3S2O1 106.69(6)°]; для L5 – [O2S2O1 121.33(9)°, C12S2O1 106.70(9)°, N3S2O1 106.69(9)°] и для L6 – [O1S2O2 121.5(1)°, C12S2O2 108.8(1)°, N3S2O2 104.5(1)°] и соответствуют значениям, характерным для соединений первого ряда.

Рисунок 2.5. Молекулярные структуры соединений L4, L5 и L6 в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью, ORTEP.

Атом азота сульфонамидной группы для L4, L5 и L6 плоско-тригональный (Σ ∠N = 360.0(8)° / 360.0(1)° / 359.9(1)°). Имидазотиазольный фрагмент плоский, выход гетероатомов

N1, N2 и S1 из плоскости C1C2C3C4C5 составляет: для L4 – [0.000Å, 0.028Å, 0.005Å]; для L5 – [0.005Å, 0.027Å, 0.007Å] и для L6 – [0.026Å, 0.011Å, 0.070Å]. Плоскости C7C8C10C11, С19С20С22С23, С25С26С28С29 всех трех фенильных заместителей С6-С11, С18-С23, С24-С29 имидазотиазольного фрагмента находятся под углом к С1С2С3С4С5-плоскости имидазотиазольного фрагмента: для L4 – [39.16°, 71.17°. 28.14°]; для L5 – [40.47°, 70.89°. 25.34°] и для L6 – [46.78°, 89.63°. 6.13°]. Плоскость C13C14C16C17 фенильного фрагмента C12-С17 расположена практически параллельно плоскости С7С8С10С11 фенильного заместителя C6-C11, угол между плоскостями для L4 14.54°, для L5 16.64° и для L6 6.84°. При этом атом S2 имеет выход из плоскости C13C14C16C17: для L4 0.064Å, для L5 0.068Å и для L6 0.014Å. Для соединений L4 и L5 заместители у фенильного кольца C12-C17 (атом C33 и Cl1 соответственно) имеют выход из плоскости C12-C17 [0.009Å и 0.013Å] соответственно.

Взаимное расположение фенильных фрагментов в этих структурах различно [135] и также связано с изменением торсионных углов и разворотом фенильного заместителя C6-C11 относительно имидазотиазольного фрагмента (Рис. 2.6). Значения торсионных углов τ_1 и τ_2 (C13C12S2N3 и C7C6C1C2) составляют: для L4 89.5(1)° и -38.2(2)°, для L5 90.9(2)° и -39.5(3)°, для L6 77.3(2)° и -47.0(3)°. При этом только для незамещенного фенила (соединение L6) реализуется заторможенная конформация с латеральным смещением фенильных фрагментов Δd относительно друг друга на 1.62 Å. Соединения L4 и L5 характеризуются заслоненной конформацией. Для L4, содержащего атом Cl, латеральное смещением фенильных фрагментов Δd относительно друг друга происходит на 1.21 Å, а для L5, содержащего метильную группу – на 1.20 Å.

В данном ряду, очевидно, изменение конформации вызвано введением объемных заместителей (атома Cl и CH₃-группы), при этом латеральный сдвиг ∆d у фенила с тяжелым атомом хлора практически не отличается от латерального сдвига ∆d у фенила с метильной группой (Табл. 2.1).

Рисунок 2.6. Конформационные различия в расположении двух фенильных фрагментов в соединениях *a*) L4, *б*) L5 и *в*) L6.

Для трех конформаций данного ряда реализуется внутримолекулярный π -стэкинг. Расстояние (d) между центроидами C7C8C10C11 (Cg1) и C13C14C16C17 (Cg2) фенильных фрагментов C6-C11 и C12-C17 практически не отличается и составляет для L3, L4 и L5 d_{L4}=3.852Å, d_{L5}=3.917Å и d_{L6}=3.681Å соответственно (Рис. 2.7). Значения торсионных углов τ_3 и τ_4 (C1C2N3S2 и C12S2N3C2) сульфонамидной группы L4, L5 и L6, определяющих π -стэкингвзаимодействие, соответствуют значениям аналогичных углов в L1 и L2 и составляют: для L4 -87.2(1)° и 98.7(1)°, для L5 -87.3(2)° и 98.9(2)°, для L6 -86.9(2)° и 65.9(2)°, а также отличаются от таковых для 3-{[(4-хлорфенил)сульфонил]метиламино}-1-метил-2-фенилимидазо[1,2*а*]пиридин-1-иум иодида [129].

Рисунок 2.7. Внутримолекулярный π - и t-стэкинг в соединениях *a*) L4, *б*) L5 и *в*) L6.

плоскости С19С20С22С23, С25С26С28С29 Следует отметить, что фенильных C24-29 имидазо[2,1-b]тиазольного заместителей C18-C23, практически фрагмента перпендикулярны. Значения углов для L4, L5 и L6 [72.72°, 71.26°, 88.12°] соответственно; а расстояние (d^t) между центроидом C19C20C22C23 (Cg3) и атомом C25 d^t_{L4}=3.222Å, d^t_{L5}=3.179Å и d^t_{1.6}=2.736Å для L4, L5 и L6 соответственно. Основываясь на выполнении условий, необходимых для t-стэкинга взаимодействия [136], можно слелать вывол 0 внутримолекулярном взаимодействии C25-H25 ···· Cg3 в данном ряду соединений (Рис.2.7).

Все три соединения данного ряда представляют собой рацемические смеси энантиомеров имидазотиазолов с соотношением 1:1 (Рис. 2.8). При этом в независимой части

кристаллической ячейки каждого из соединений находится молекула только одного из энантиомеров, отличающаяся от другого энантиомера лишь знаком градусной меры торсионных углов.

Рисунок 2.8. Энантиомеры имидазотиазолов (пространственное наложение двух молекул) *a*) L4 *б*) L5 и *в*) L6.

При замене трифенилимидазотиазольного фрагмента (L4-L6) на имидазотиазольный (перспективные лиганды четвертого ряда L10, L11) атом серы S2 (Рис. 2.9) сохраняет форму искаженного тетраэдра. Валентные углы в пределах экспериментальных погрешностей близки: для L10 – [O1S2O2 120.7(1)°, C12S2O2 109.5(1)°, N3S2O2 107.5(1)°] и для L11 – [O1S2O2 120.26(8)°, C12S2O2 107.68(9)°, N3S2O2 105.36(8)°] и также соответствуют значениям, характерным для соединений L1, L2, L4-L6.

Рисунок 2.9. Молекулярные структуры соединений L10 и L11 в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью, ORTEP.

Атом азота сульфонамидной группы L10 и L11 плоско-тригональный (Σ ∠N = 360.0(2)° / 360.0(1)°). Имидазотиазольные фрагменты плоские, выходы гетероатомов N1, N2 и S1 из

плоскости C1C2C3C4C5 составляют: для L10 – [0.021Å, 0.027Å, 0.031Å] и для L11 – [0.000 Å, 0.045Å, 0.009Å]. Для L10, L11 фенильные заместители C6-C11 находятся под меньшим углом к плоскостям имидазотиазольных фрагментов 32.87°, 34.18°, соответственно. Атом C1 в соединении L10 и углерода метильной группы C22 в L11 выходят из плоскости фенильного фрагмента C12-C17 на 0.136Å и 0.105Å, соответственно. Так же, как и для L10, L11, плоскость фенильного фрагмента C12-C17 параллельна плоскости фенильного заместителя C6-C11, угол между плоскостями составляет 6.12° и 6.64° для L10, L12 соответственно.

Взаимное расположение фенильных фрагментов в этих соединениях идентичное (Рис. 2.10), для них характерна заслоненная конформация [135] с латеральным смещением фенильных фрагментов Δd относительно друг друга на 1.5Å (Табл. 2.1). Торсионные углы τ_1 и τ_2 (C11C6C1CC2 и C17C12S2N3) для L10 составляют -33.5(4)° и 80.3(2)° и для L11 – -30.9(3)° и 80.3(2)° соответственно.

Рисунок 2.10. Конформационные различия в расположении двух фенильных фрагментов в соединениях *a*) L10 и *б*) L11.

В результате в данных соединениях также реализуется внутримолекулярный π-стэкинг. Расстояние (d) между центроидами C7C8C10C11 (Cg1) и C13C14C16C17 (Cg2) фенильных фрагментов C6-C11 и C12-C17 практически одинаковое и составляет для L10 и L11 d_{L10}=3.653Å и d_{1,11}=3.639Å соответственно (Рис.2.11). Значения торсионных углов сульфонамидной группы для L10 и L11, определяющих *π*-стэкинг-взаимодействие, соответствуют значениям L2 аналогичных углов В L1 И И отличаются ОТ для 3-{[(4таковых хлорфенил)сульфонил]метиламино}-1-метил-2-фенилимидазо[1,2-а]пиридин-1-иум иодида [129]. Торсионные углы т₃ и т₄ (C1C2N3S2 и C12S2N3C2) для L10 составляют -85.3(3)° и 90.7(2)°, и для L11 – -83.1(2)° и 88.4(2)° соответственно.

Рисунок 2.11. Внутримолекулярное *π*-стэкинг-взаимодействие между фенильными фрагментами C6-C11 и C12-C17 в соединениях *а*) L10 и *б*) L11.

Соединения данного ряда также представляют собой рацемические смеси двух энантиомеров (Рис. 2.12) в соотношении 1:1.

Рисунок 2.12. Энантиомеры имидазотиазолов (пространственное наложение двух молекул) *a*) L10 и б) L11.

При замене имидазотиазольного фрагмента (L10, L11) на имидазопиридиновый (перспективные лиганды пятого ряда L13, L14, L15) атом серы S2 сохраняет форму искаженного тетраэдра (Рис. 2.13), валентные углы: для L13 – [O1S1O2 120.4(1)°, O1S1C14 106.8(1)°, O1S1N3106.4(1)°]; для L14 – [O1S1O2 120.7(2)°, O1S1C14 107.9(2)°, O1S1N3 106.8(2)°], для L15 – [O1S1O2 120.2(1)°, O1S1C14 108.4(1)°, O1S1N3 106.9(9)°] и также соответствуют значениям, характерным для соединений L1, L2, L4-L6, L10, L11.

Рисунок 2.13. Молекулярные структуры соединений L13, L14 и L15 в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью, ORTEP.

Атом азота сульфонамидной группы для L13, L14 и L15 плоско-тригональный (Σ ∠N= 360.0(1)° / 360.1(3)° / 360.0(1)°). Имидазопиридиновый фрагмент имеет плоское строение, выход гетероатомов N1 и N2 из плоскости колец C1C2C3C5C7 составляет: для L13 – [0.016Å, 0.008Å]; для L14 – [0.011Å, 0.058Å], для L15 – [0.039Å, 0.032Å]. При этом заместители имидазопиридинового фрагмента (атом хлора Cl1 для соединения L14 и атом углерода C20 метильного фрагмента для соединения L15) значительно выходят из плоскости колец C1C2C3C5C7: для L14 0.243Å и для L15 0.106Å соответственно. Плоскость C9C10C12C13 фенильного заместителя С8-С13 находится под углом К С1С2С3С5С7-плоскости имидазопиридинового фрагмента [51.33°, 48.43°, 64.10°] для L13, L14 и L15 соответственно. Для соединения L13 атом углерода C20 метильного заместителя фенильного фрагмента C8-C13 находится почти в плоскости C9C10C12C13 и составляет 0.043Å. Плоскость C15C16C18C19 R-C14-C19 фенильного фрагмента расположена практически параллельно плоскости С1С2С3С5С7 имидазопиридинового фрагмента, угол между плоскостями [21.81°, 15.81°,

31

25.94°] – для L13, L14 и L15 соответственно. Заместитель у фенильного кольца C14-C19 (атом хлора Cl1 для соединений L13, атом хлора Cl2 для соединения L14 и атом C21 метильной группы для соединения L15) выходят из плоскости C15C16C18C19 [0.002Å, 0.059Å, 0.014Å] для L13, L14 и L15. соответственно. При этом, плоскости колец C1C2C3C5C7 и C15C16C18C19 не перекрывают друг друга в пространстве, приводя к невозможности реализации в структурах подобного типа внутримолекулярного π -стэкинга, и, соответственно, конформационных различий двух фенильных фрагментов. Торсионные углы τ_3 и τ_4 (C2C1N3S1 и C14S1N3C1) составляют: для L13 – [97.2(2)°, 87.9(2)°]; для L14 – [99.6(5)°, 80.1(4)°]; для L15 – [88.7(2)°, 82.5(2)°] соответственно.

Разворот фенильных заместителей C8-C13 и C14-C19 относительно имидазо[1,2*а*]пиридинового фрагмента во всех соединениях различен, торсионные углы τ_1 и τ_2 (C9C8C2C1 и C15C14S1N3) составляют: для L13 – [-54.3(4)°, 114.8(2)°]; для L14 – [-47.8(8)°, 108.0(4)°]; для L15 – [58.1(3)°, 108.8(2)°] соответственно.

Особенностью этих соединений является открытая конформация, в которой нет условий для формирования внутримолекулярного π-стэкинга [137]. Все соединения данного ряда L13, L14 и L15 представлены (Рис. 2.14) рацемическими смесями двух энантиомеров в соотношении 1:1.

Рисунок 2.14. Энантиомеры имидазопиридинов (пространственное наложение двух молекул) *a*) L13 *б*) L14 и *в*) L15.

Таким образом, структурным элементом, определяющим внутримолекурный *π*-стэкинг в изученных замещенных бензимидазотиальных, имидазотиазольных и имидазопиридиновых сульфонамидах, является конформация сульфонамидной группы. определяемая торсионными углами (Табл. 2.1).

Соединение	Торсионные углы, °				τ_5, \circ	Cg1-Cg2, Å	Δd, Å
	$\angle \tau_1$	$\angle \tau_2$	$\angle \tau_3$	$\angle \tau_4$		11	
L1	83.1(1)	-36.6(2)	-87.4(1)	96.18(9)	4.13	3.808	1.55
L2	74.5(3)	-45.9(4)	-92.5(3)	74.3(2)	4.82	3.693	0.99
L4	89.5(1)	-38.2(2)	-87.2(1)	98.7(1)	14.54	3.852	1,21
L5	90.9(2)	-39.5(3)	-87.3(2)	98.9(2)	16.64	3.917	1,20
L6	77.3(2)	-47.0(3)	-86.9(2)	65.9(2)	6.84	3.681	1,62
L10	80.3(2)	-33.5(4)	-85.3(3)	90.7(2)	6.12	3.653	1.59
L11	80.3(2)	-30.9(3)	-83.1(2)	88.4(2)	6.64	3.639	1.58
L13	114.8(2)	-54.3(4)	97.2(2)	87.9(2)	-	-	-
L14	108.0(4)	-47.8(8)	99.6(5)	80.1(4)	-	-	-
L15	108.8(2)	58.1(3)	88.7(2)	82.5(2)	-	-	-
CCDC 878863	-112.1(3)	31.3(5)	100.8(4)	-123.7(2)	33.28	5.283	-

Таблица 2.1. Торсионные углы, определяющие внутримолекурное *π*-стэкингвзаимодействие.

2.1.2. QTAIM-анализ топологических данных производных сульфонамидов

Методами квантовой химии изучено стереоэлектронного и топологическое строение молекул L1, L2, L4- L6, L10 и L11. Целью топологического анализа является определение теоретических предпосылок возникновения π-стэкинга в исследуемых молекулах.

В молекуле L1 расчет критических точек в пространстве электронной плотности дает две связевых точки (Рис. 2.17). Расстояние C7^{...}C17 и C8^{...}C16 составляют 3.47 и 3.64 Å, соответственно. Значения электронной плотности ρ в области критических точек (3, -1) типа составляют 6.10x10⁻³ e⁻Å⁻³ и 4.44x10⁻³ e⁻Å⁻³, соответственно (Рис. 2.15).

Для анализа невалентных взаимодействий существует ряд дескрипторов. Одним из таких дескрипторов является «индикатор плотности перекрывания областей» (DORI – density overlap regions indicator) [88].

$$DORI(r) = \theta(r) / [1 + \theta(r)]$$
(2.1)

где $\theta(r) = [\nabla(\nabla \rho(r)/\rho(r))^2]^2 / [\nabla \rho(r)/\rho(r)]^6$. Величина DORI меняется в пределах [0, 1].

Рисунок 2.15. Критические точки (3,-1) типа в соединении L1. Красными кружками отмечены точки (3,-1) типа, отвечающие *π*-стэкингу.

Согласно этому дескриптору, эффективное перекрывание в пространстве «функции электронной локализации» (ELF) идет между всеми углеродными атомами бензольных колец. Таким образом, экспериментальные данные хорошо согласуются с двумя независимыми теоретическими дескрипторами, свидетельствующими в пользу формирования π-сопряженной системы из двух ароматических колец.

Выполненный DORI-анализ предсказывает π-взаимодействие между параллельно расположенными ненасыщенными фрагментами для соединения L1 (Рис. 2.16).

Рисунок 2.16. DORI-анализ молекулы L1. Зеленая область между фенильными фрагментами характеризует эффективное взаимодействие двух *π*-систем.

Замена хлора в молекуле L1 на метильную группу (молекула L2) увеличивает количество критических точек типа (3,-1). Дополнительно возникает С-Н[…] π взаимодействие между π -системой кольца и атомом водорода метильной группы. При этом все значения электронных плотностей существенно падают по сравнению со значениями для хлорзамещенного аналога. Межатомные расстояния при этом существенно не меняются и лежат в пределах 3.56-3.59 Å для π - π -взаимодействия и 3.22 Å для С-Н[…] π взаимодействия. Значения электронных плотностей составляют 4.27х10⁻³ e⁻Å⁻³, 4.63х10⁻³ e⁻Å⁻³ и 3.57 e⁻Å⁻³, соответственно (Рис. 2.17).

Рисунок 2.17. Критические точки (3,-1) типа в соединении L2. Красными кружками отмечены точки (3,-1) типа, отвечающие *п*-стэкингу.

DORI-анализ также обнаруживает π-π-взаимодействие между ненасыщенными фрагментами молекулы L2 (Рис. 2.18).

Рисунок 2.18. DORI-анализ молекулы L2. Зеленая область между ароматическими кольцами характеризует эффективное взаимодействие двух *π*-систем.

Сульфонамидные производные трифенилимидазотиазольного ряда представлены тремя молекулами L4, L5 и L6. Фенильный заместитель при сульфо-группе имеет в пара-положении атом хлора (молекула L4), метильную группу (L5) и незамещенный (L6). Для L4 расчет в пространстве электронной плотности даёт наличие 2-х связевых критических точек между ароматическими кольцами. Расстояние между атомами C6 и C17 молекулы составляет 3.34 Å, а между атомами C9 и C16 3.60 Å. При этом значения электронной плотности ρ в области критических точек (3, -1) типа составляют 6.08х10⁻³ e⁻Å⁻³ и 4.30х10⁻³ e⁻Å⁻³, соответственно (Рис. 2.19 *а*).

При замене атома хлора на метильную группу (молекула L5) расчет также дает две критические точки (3, -1) типа и незначительное изменение электронной плотности. Значения ρ составляют 5.90х10⁻³ e^A-³ и 3.97х10⁻³ e^A-³, соответственно (Рис. 2.19 б). Соответствующее межатомное расстояние между атомами C6 и C17 составляет 3.36Å, а между атомами C9 и C16 3.66Å. Однозначно нельзя сделать вывод, что это изменение вызвано только эффектом заместителя.

Интересная ситуация реализуется для случая, если взаимодействуют два незамещенных фенильных кольца (L6). В этом случае также наблюдаются две связевых критических точки

(3,-1) со значениями электронной плотности ρ 5.83x10⁻³ e⁻Å⁻³ и 6.14x10⁻³ e⁻Å⁻³ соответственно (Рис. 2.19 *в*). При этом расстояния составляют 3.41 Å и 3.37 Å. В последнем случае путь связи соединяет атом углерода C10 не с конкретным атомом соседнего кольца, а лежит на связи C14-C15.

Рисунок. 2.19. Критические точки (3,-1) типа в соединениях *a*) L4, *б*) L5, *в*) L6. Красными кружками отмечены точки (3,-1) типа, отвечающие π-стэкингу.

Проведенный DORI-анализ, показал во всех трех соединениях ряда L4-L6, наличие внутримолекулярного π-π-взаимодействия (Рис. 2.20 *a*, 2.20 *b*, 2.20 *b*). Зеленые области между ароматичекими фрагментами характеризуют эффективное взаимодействие двух π-систем.

Рисунок 2.20. DORI-анализ *a*) для молекулы L4, *б*) для молекулы L5, *в*) для молекулы L6.

В соединении L10 между ненасыщенными фрагментами наблюдается две критические точки (3,-1), между атомами C10^{···}C15, атомом C11 и связевой критической точкой, лежащей на связи C15-C13. Расстояние C10^{···}C15 составляет 3.32 Å, а C11^{···}Кт (между C12 и C13) лежит в пределах $3.41 \div 3.50$ Å, при этом значения электронной плотности р составляют 6.50×10^{-3} e⁻Å⁻³ и 6.12×10^{-3} e⁻Å⁻³, соответственно. Сравнивая со значениями, полученными для соединения L1, можно отметить, что эффективность π - π стэкинга в ненасыщенных фрагментах сохраняется (Рис. 2.21).

Рисунок 2.21. Критические точки в молекуле L10.

Для соединения L11 в π - π стэкинге задействованы пары C8^{···}C15 (3.36 Å) и C7^{···}Кт (между C12 и C17), с расстоянием в пределах 3.37÷3.47 Å (Рис. 2.22). Соответствующие значения электронной плотности равны 6.18х10⁻³ e⁻Å⁻³ и 6.48 х10⁻³ e⁻Å⁻³, что на $\approx 2 \times 10^{-3}$ e⁻Å⁻³ больше, чем в соединении L2. Возможно, это объясняется заторможенной (L2) и заслоненной (L11) формой относительного расположения бензольных колец.

Рисунок 2.22. Критические точки в молекуле L11.

Для соединений L10 и L11 DORI-анализ также обнаруживает эффективное взаимодействие двух π-систем (Рис. 2.23)

Рисунок 2.23. DORI-анализ молекулы *a*) L10 и *б*) L11. Зеленая область между параллельно расположенными ароматическими фрагментами характеризует эффективное взаимодействие двух *π*-систем.

Энергия взаимодействия была оценена по уравнению (1.7) Эспинозы [81], потому как плотность потенциальной энергии в связевой критической точке типа (3,-1) является наиболее часто используемой характеристикой для оценки невалентных взаимодействий.

Ниже приведены данные (Табл. 2.2), отражающие зависимость расстояния между атомами от электронной плотности ρ в критической точке между ними. Водородные связи представлены для сравнения. Как видно из таблицы, энергия π -стэкинг-взаимодействия почти в 2 раза меньше энергии водородных связей. Что говорит о вполне разумной оценке энергии по уравнению Эспинозы для данных молекул, хотя зачастую оно дает завышенные оценки энергии взаимодействия.

Соединение	Расстояние	Электронная	Плотность	Энергия
	R , Å	плотность	потенциальной	взаимодействия
		$\rho x 10^{-3}, e^{-} Å^{-3}$	энергии	Е, ккалл/моль
			V x10 ⁻³ , a.u.	E=V/2
L1	3.47	6.10	2.65	0.832 (π-π)
	3.64	4.44	1.94	0.609 (π-π)
	2.85	6.77	4.14	1.299 (C-H N)
	2.74	8.27	5.06	1.588 (C-H N)
L2	3.56	4.27	1.84	0.578 (π-π)
	3.59	4.63	1.95	0.612 (π-π)
	3.22	3.57	1.65	0.518 (C-H π)
	2.87	6.47	3.98	1.249 (C-H N)
L4	3.34	6.08	2.81	$0.882(\pi - \pi)$
	3.60	4.30	1.88	$0.590(\pi - \pi)$
	2.69	7.89	4.09	1.283(C-H π)
	3.13	9.51	5.46	1.713(N C)
	2.73	6.81	5.58	1.751(C-H N)
L5	3.36	5.90	2.72	0.854 (π-π)
	3.66	3.97	1.72	0.540 (π-π)
	2.67	8.15	4.21	1.321 (C-H π)
	3.14	9.37	5.37	1.685 (N C)
L6	3.41	5.83	2.80	0.879(π-π)
	3.37	6.14	2.55	0.800(π-π)
	2.46	11.68	4.09	1.283(C-H π)
L10	3.41÷3.50	6.12	2.74	0.860 (π-π)
	3.32	6.50	3.03	0.951 (π-π)
	2.73	8.34	5.08	1.594 (C-H N)
L11	3.37÷3.47	6.48	2.90	0.910 (π-π)
	3.36	6.18	2.79	0.878 (π-π)
	2.69	8.30	5.32	1.669 (C-H N)

Таблица 2.2. Оценка энергии невалентных внутримолекулярных взаимодействий.

2.1.3. Кристаллическая структура перспективных лигандов

Несмотря на то, что соединения L1 и L2 представляют из себя различные по форме и цвету кристаллы (желтые призмы для L1 и бесцветные пластины для L2), а также кристаллизуются в различных сингониях (моноклинная для L1 и орторомбическая для L2) и пространственных группах (P21/c для L1 и P212121 для L2) - оба соединения имеют схожую кристаллическую структуру. Независимые части кристаллических ячеек L1 и L2 содержат по одной молекуле соединений. Построение кристаллической 1D модели (Puc. 2.24) для соединений L1 и L2 становится возможным благодаря наличию межмолекулярных водородных N-H[…]N взаимодействий между атомом азота имидазольного цикла одной молекулы и N-H-фрагментом другой N₃-H_{3N}[…]N₁ 1.996Å и 2.085Å для L1 и L2 соответственно.

Рисунок 2.24. 1D кристаллический мотив для соединений *a*) L1 и б) L2. Проекция на ось

1D фрагменты представляют из себя цепи вдоль оси *b* с укладкой молекул паркетом голова к голове.

2D архитектура для соединений L1 и L2 складывается путем связывания 1D цепей вдоль оси *с* посредством наличия межмолекулярных коротких контактов C-H[…]O между одним из атомов водорода фенильного заместителя одной молекулы и одним из атомов кислорода сульфонной группы другой молекулы C₉-H₉[…]O₂ 2.587Å и 2.776Å для L1 и L2, соответственно (Рис. 2.25). Для L1 каждая 1D цепь построена только из энантиомеров одного вида.

Рисунок 2.25. 2D кристаллический мотив соединений *a*) L1 и б) L2.

3D супрамолекулярная структура кристалла в соединениях L1 и L2 стабилизируется наличием межмолекулярных коротких контактов. Так, для соединения L1: расстояние между центроидом C3C4C5 имидазольного цикла первой молекулы и атомом водорода H16 хлорзамещенного фенильного фрагмента второй молекулы, а также расстояние между атомом водорода H14 хлорзамещенного фенильного фрагмента второй молекулы и центроидом C3C4C5 имидазольного цикла третьей молекулы - составляют 3.193Å и 2.844Å соответственно (Рис. 2.26 *а*).

Рисунок 2.26. Стабилизация 3D мотива кристалличсекой архитектуры для соединений *a*) L1 и *б*) L2.

Для соединения L2: расстояние между центроидом C3C4C5 имидазольного цикла первой молекулы и атомом водорода H16 метилзамещенного фенильного фрагмента второй молекулы,

а также расстояние между атомом водорода H14 метилзамещенного фенильного фрагмента второй молекулы и центроидом S1N2C2 имидазотиазольного цикла третьей молекулы - составляют 3.583Å и 3.985Å соответственно (Рис. 2.26 б), что свидетельствует о наличии межмолекулярного t-стэкинга вдоль оси *а* для обоих соединений L1 и L2. Такие короткие контакты формируют сложную супрамолекулярную архитектуру соединений L1 и L2 (Рис. 2.27).

Рисунок 2.27. 3D архитектура кристаллической структуры для соединений *a*) L1 и *б*) L2. В то время как соединение L6 (желтые иглы) кристаллизуется индивидуально без включений растворителя и имеет более высокую моноклинную сингонию (пространственная группа P21/c), соединения L4 и L5 (бесцветные пластины и бесцветные призмы соответственно) являются сокристаллами с диметилформамидом (растворитель) в соотношении 1:1 и, возможно именно поэтому, кристаллизуются в одной сингонии (триклинной) и пространственной группе (P -1), а также имеют схожие параметры кристаллической ячейки (Таблицы 3.8, 3.10).

Независимые части кристаллических ячеек L4 и L5 содержат по одной молекуле соединений и одной молекуле совместно кристаллизованного растворителя. Для соединений L4 и L5 необходимо отметить наличие водородной связи N-H[…]O между водородом аминогруппы имидазотиазола и кислородом карбонильной группы растворителя N₃-H_{3N}[…]O₃ 1.868Å и 1.885Å для соединений L4 и L5 соответственно (Рис. 2.28), безусловно влияющей на построение кристаллической структуры этих соединений.

Рисунок 2.28. Водородная связь молекулы соединения с молекулой растворителя в *a*) L4 и *б*) L5.

1D мотив для сокристаллов L4 и L5 образуется с участием совместно кристаллизованного растворителя вдоль оси b для соединения L5 и по диагонали между осями b и c для соединения L4 (Рис. 2.29 a и δ). При этом каждая цепь состоит только из одинаковых энантиомеров.

При этом цепи энантиомеров в соединении L4 образуются за счет C_{27} - H_{27} ^{...}Cl₁ взаимодействий 2.8623Å между атомом галогена хлорфенильного заместителя и атомом водорода фенильного заместителя C24-C29 (Рис. 2.29 *в*). А в соединении L5 за счет взаимодействий C_{14} - H_{14} ^{...}S₁ 2.9612Å между атомом водорода метилфенильного заместителя и атомом серы имидазотиазольного цикла (Рис. 2.29 *г*).

а

б

44

Рисунок 2.29. 1D модели кристаллических структур соединений *a*) L4 и *б*) L5; и межмолекулярные взаимодействия в цепях *в*) L4 и *г*) L5.

2D мотив соединения L4 становится возможным за счет существования водородной связи C₂₉-H₂₉...Cl₁ 2.9447Å между атомом галогена хлорфенильного заместителя и атомом водорода фенильного заместителя C24-C29 (Рис. 2.30)

Рисунок 2.30. 2D модели кристаллических структур для соединения L4.

2D архитектура соединения L5 стабилизируется межмолекулярными t-стэкингвзаимодействиями, о которых можно судить из расстояния 3.129Å между центроидром тиазольного цикла одной молекулы (Рис. 2.31) и водородом H8 фенильного заместителя C6-C11 другой.

Рисунок 2.31. 2D модели кристаллических структур для соединения L5.

3D архитектура соединения L4 дополнительно стабилизируется наличием коротких взамодействий между центроидом фенильного заместителя C24-C29 и одним из водородов метильной группы растворителя H31B 2.945Å, что свидетельствует о наличии межмолекулярного *π*-стэкинга между молекулой соединения и молекулой растворителя в

соединении L4. Таким образом, формируется для обоих соединений сложная стопочная супрамолекулярная 3D архитектура (Рис. 2.32)

Рисунок 2.32. 3D супрамолекулярная архитектура соединений: *а*) L4 и *б*) L5. Атомы водородов опущены для упрощения.

Независимая часть кристаллической ячейки L6 содержит одну молекулу. В соединении L6 межмолекулярные водородные связи (Рис. 2.33 *a*) N-H^{...}N и короткие S^{...}O контакты между соседними молекулами N₃-H_{3N}^{...}N₁ 2.197Å и S₁^{...}O₂ 3.320(2)Å приводят к построению 1D модели кристаллической структуры вдоль оси *с* элементарной ячейки кристалла, с упаковкой молекул ёлочкой (Рис. 2.33 δ).

Рисунок 2.33. Проекция 1D-слоя для соединения L6 на ось **с**: *а*) межмолекулярные водородные связи, *б*) архитектура слоя.

2D и одновременно 3D моделирование кристалла (Рис. 2.34) осуществляется за счет одинаковых межмолекулярных взаимодействий (2.726Å) между атомом азота имидазольного цикла одной молекулы и атомом водорода фенильного фрагмента C18-C23 другой молекулы.

Рисунок 2.34. Межмолекулярные 2D и 3D контакты в кристаллической структуре для соединения L6.

Дальнейшая упаковка на чередование цепочек перекрещенных 1D мотивов в шахматном порядке: голова к голове и хвост к хвосту (Рис. 2.35). При этом каждая цепь также состоит только из энантиомеров одного вида.

Рисунок 2.35. 3D модель супрамолекулярной архитектуры для соединения L6, атомы водородов скрыты для упрощения.

Соединения L10 и L11 (бесцветные пластины) кристаллизуется в моноклинной сингонии пространственной группе Р 21/п. Независимые части кристаллических ячеек L10 и L11 содержит по одной молекуле соединений. Кристаллическая структура для обоих соединений начинается с построения 1D модели вдоль оси *b* кристаллической ячейки за счет межмолекулярных водородных связей N-H[…]N соседних молекул N₃-H_{3N}[…]N₁ 1.903Å и 1.905Å соответственно для L10 и L11. 1D мотив сформирован паркетом голова к голове (Рис. 2.36).

Рисунок 2.36. 1D мотив модели кристаллических структур для соединений *a*) L10 и *б*) L11. Проекция на ось *b*.

Построение 2D модели для соединения L10 (оси *b* и *c*) становится возможным, главным образом, за счет водородных C-H[…]Cl связей C₄-H₄[…]Cl₁ 2.9356Å между одним из водородов

имидазольного цикла и хлор-заместителем фенильного кольца двух соседних молекул (Рис. 2.37 *a*), ориентированных хвост к хвосту.

Рисунок 2.37. 2D мотив модели кристаллических структур для соединений a) L10 и b)

L11.

В свою очередь, 2D модель соединения L11 (оси b и c) образована t-стэкинг C-H^{...}C взаимодействиями C₃-H₃^{...}C₉ 2.745Å между атомом углерода фенильного кольца и атомом водорода имидазольного цикла двух соседних молекул (Рис. 2.37 δ).

3D архитертура кристалла L10 стабилизирована, главным образом, межслоевыми водородными C-H...O связями между одним из кислородов сульфо-группы и одним из водородов фенильного кольца C₇-H₇^{...}O₁ 2.673Å, что приводит к формированию супрамолекулярной структуры кристалла (Рис. 2.38 *a*).

Подобно соединению L10 3D архитектура L11 построена на межслоевых C-H^{\cdots}O водородных связях одного из кислородов сульфо-группы и одного из водородов фенильного кольца C₁₁-H₁₁^{\cdots}O₂ 2.677Å, что приводит также к построению супрамолекулярных ансамблей (Рис. 2.38 δ).

Рисунок 2.38. 3D архитектура кристаллических структур соединений а) L10 и b) L11.

Соединение L13 (желтые призмы) кристаллизуется в триклинной сингонии пространственной группе P-1. Независимая часть кристаллической ячейки L13 содержит одну молекулу. Образует димеры (Рис. 2.39) благодаря наличию межмолекулярных водородных связей N₃-H_{3N}^{...}N₁ 2.320Å между водородом N-H-группы одной молекулы и одним из азотов имидазольного цикла другой. В образованном димере расстояние 3.995Å между центроидом C15C16C18C19 Cl-замещенного фенильного фрагмента одной молекулы и центроидом C1C2C7 имидазотиазольного фрагмента другой свидетельствует о наличии межмолекулярного *п*-стэкинг-взаимодействия, что дополнительно стабилизирует димер.

Рисунок 2.39. π-стэкинг стабилизация димеров соединения L13.

Вдоль оси *с* элементарной ячейки кристалла димерный ряд формируется посредством слабых коротких N-H[…]H-C взаимодействий N₃-H_{3N}...H₂₀-C₂₀ 2.442Å между водородом N-Hгруппы одной молекулы и одним из водородов метильной группы фенильного фрагмента C8-C13 другой, образуя димерные цепи (Рис. 2.40). Интересно отметить, что каждое звено цепи состоит из двух энантиомеров, чередующихся один через один.

Рисунок 2.40. 1D мотив модели кристаллической структуры соединения L13, проекция на ось *с*.

Вдоль оси *b* (Рис. 2.41) димерные цепи соединены между собой водородными С-Н^{...}О связями С₁₅-H₁₅^{...}O₁ 2.614Å между одним из кислородов сульфо-группы одной молекулы и одним из водородов СІ-замещенного фенильного фрагмента другой молекулы.

Рисунок 2.41. 2D мотив модели кристаллической структуры соединения L13. Подобно, вдоль оси *а* димерные цепи соединены между собой водородными C-H[…]O связями C₁₈-H₁₈[…]O₂ 2.700Å между одним из кислородов сульфо-группы одной молекулы и одним из водородов Cl-замещенного фенильного фрагмента другой молекулы. Кристаллическая структура дополнительно стабилизируется наличием водородной C-H[…]O связи C₂₀-H_{20B}[…]O₂ 2.676Å между одним из кислородов сульфо-группы одной молекулы и одним из водородов метильной группы фенильного фрагмента C8-C13 другой. Приводя к формированию супрамолекулярного мотива кристалла (Рис. 2.42 *а* и δ), в котором димерные цепи располагаются в шахматном порядке.

Рисунок 2.42. 3D архитектура кристаллической структуры для соединения L13 (а и б).

Соединение L15 (бесцветные призмы) кристаллизуется в моноклинной сингонии в пространственной группе P21/n. Независимая часть кристаллической ячейки L15 содержит одну молекулу соединения, которые также димеризуется благодаря наличию межмолекулярных водородных связей N₃-H_{3N}...N₁ 2.419Å между водородом N-H-группы одной молекулы и одним из азотов имидазольного цикла другой. Следует отметить, что димеры дополнительно стабилизируется межмолекулярным π -стэкингом, о котором свидетельствует расстояние 3.911Å между центроидом C15C16C18C19 метилзамещенного фенильного фрагмента одной молекулы и центроидом C1C2C7 имидазольного цикла другой (Рис. 2.43).

Рисунок 2.43. Димер соединения L15.

Димерный ряд соединения L15 формируется вдоль оси c (Рис. 2.44) элементарной ячейки кристалла вследствие образования C-H^{...}O водородных связей C₁₁-H₁₁^{...}O₁ 2.440Å между одним из атомов кислорода сульфо-группы одной молекулы и одним из атомов водорода фенильного фрагмента C8-C13 другой, что также образует длинные димерные цепи с чередованием энантиомеров.

Рисунок 2.44. 1D мотив соединения L15, проекция на ось *с*.

Вдоль оси *а* (Рис. 2.45) димерные цепи связаны благодаря наличию коротких контактов N-H[…]H-C взаимодействий N₃-H_{3N}[…]H_{20C}-C₂₀ 2.335Å между атомом водорода N-H-группы одной молекулы и одним из атомов водорода метильной группы имидазопиримидинового фрагмента другой.

Рисунок 2.45. 2D мотив модели кристаллической структуры для соединения L15.

Вдоль оси *b* димерные цепи формируются благодаря наличию С-Н[…]О водородных связей C_{16} - H_{16} […] O_1 2.410Å между одним из кислородов сульфо-группы одной молекулы и одним из водородов метилфенильного заместителя другой, формируя, таким образом, сложную супрамолекулярную архитектуру системы (Рис. 2.46). Димерные цепи при этом располагаются «паркетом».

Рисунок 2.46. 3D архитектура кристаллической структуры для соединения L15.

Соединение L14 кристаллизуется в моноклинной сингонии в пространственной группе P21/c. Независимая часть кристаллической ячейки L14 содержит одну молекулу соединения. Также димеризуется посредством межмолекулярных водородных связей N_3 - H_{3N} ^{...} N_1 2.520Å между водородом N-H-группы одной молекулы и одним из азотов имидазольного цикла другой, и также дополнительно стабилизируется межмолекулярным π -стэкингом. Расстояние 3.805Å

между центроидом C15C16C18C19 Cl-замещенного фенильного фрагмента одной молекулы и центроидом C1C2C7 имидазольного цикла другой (Рис. 2.47).

Рисунок 2.47. Димер соединения L14.

Кристаллическая структура соединения L14 (бесцветные иглы) несколько отличается от его аналогов. Формирование кристалличекой структуры происходит не вдоль осей кристаллической решетки, а по ее диагоналям.

Так, формирование димерных цепей за счет водородных С-Н[…]О связей С₁₃-H₁₃[…]O₂ 2.661Å между одним из кислородов сульфо-группы одной молекулы и одним из водородов фенильного фрагмента С8-С13 другой происходит по диагонали осей c и b (Рис. 2.48). Также образуются длинные димерные цепи с чередованием энантиомеров, но при этом чередующиеся димерные композиции (пары энантиомеров) по-разному ориентированы в пространстве. Они развернуты на 90° относительно друг друга.

Рисунок 2.48. 1D архитектура кристаллической структуры для соединения L14, проекция на оси *с* и *b*.

За счет этих же С-Н...О водородных связей (от пар энантиомеров, которые повернуты на 90° относительно остальных) происходит построение кристалла по диагонали осей *b* и *c* (Рис. 2.49).

Рисунок 2.49. 2D мотив модели кристаллической структуры для соединения L14, проекция на оси *b* и *c*.

Вдоль оси *a* (Рис. 2.50) кристаллическая структура соединения L14 стабилизируется межмолекулярными π-стэкингом и t-стэкингом, о чем свидетельствуют значения расстояний между: центроидом C14C16C18 Cl-фенильного фрагмента C14-C19 одной молекулы и центроидом N2C4C6 имидазотиазольного фрагмента другой – 3.661Å, а также центроидом C8C10C12 фенильного заместителя C8-C13 одной молекулы и одним из атомов водорода H5 имидазотиазола другой – 3.366Å.

Рисунок 2.50. 3D архитектура кристаллической структуры для соединения L15.

2.2. Производные имидазо[2,1-*b*][1,3]тиазол2-ил)бензолсульфонамидов в качестве металлокомплексов

2.2.1. Молекулярная структура металлокомплексов

При сборке комплексных структур типа Cl₂Cu2L конфигурация лиганда сохраняется. Примеры комплексов на базе лигандов сульфонамидозамещенных имидазотиазолов представлены соединениями C1 и C2.

Согласно PCA, в комплексе C1 атом меди Cu1 (Рис. 2.51) принимает сильно искаженную тетраэдрическую 2N2Cl-координацию, углы при связях составляют [Cl3Cu1N4 94.44(9)°, Cl3Cu1Cl4 94.18(4)°, Cl3Cu1N1 147.16(9)°]. Два атома серы S2 и S4 принимают форму искаженного тетраэдра, в которых углы при связях составляют [O1S2O2 120.6(2)°, C12S2O2 107.9(2)°, N3S2O2 107.7(2)°; O4S4O3 121.4(2)°, C35S4O3 109.1(2)°, N6S4O3 106.9(2)°] и соответствуют средним значениям углов для ранее описанных перспективных лигандов (раздел 2.1.) Имидазотиазольные фрагменты плоские, выход гетероатомов N1, N2, S1 из плоскости C1C2C3C4C5 и N4, N5, S3 из плоскости C24C25C26C27C28 соответственно составляют [0.009Å, 0.013Å, 0.026Å и 0.016Å, 0.013Å, 0.018Å]. Плоскости фенильных заместителей C6-C11 и С29-С34 расположены под углом к плоскостям связанных с ними имидазотиазольных фрагментов [44.26° и 28.55°] соответственно. Плоскости СІ-фенильных фрагментов практически параллельны плоскостям фенильных заместителей С6-С11 и С29-С34, углы между плоскостями составляют соответственно [11.28° и 19.98°]. Атомы S2, S4 и атомы Cl1, Cl2 выходят из плоскостией соответствующих ароматических колец на 0.068Å, 0.139Å и 0.059Å, 0.004Å, соответственно. Плоскости C19C20C22C23 и C42C43C45C46 фенильных фрагментов C18-C23 и C41-C46 расположены под углом 40.53° и 57.44° к плоскостям C1C2C3C4C5 и С24С25С26С27С28 имидазотиазольных фрагментов соответственно.

Рисунок 2.51. Молекулярная структура комплекса С1 в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью, ORTEP.

Взаимное расположение четырех фенильных фрагментов в комплексе C1 различно и связано с изменением торсионных углов и разворотом фенильных заместителей C6-C11 и C29-C34 относительно имидазотиазольных фрагментов. Значения торсионных углов τ_1 и τ_2 (C13C12S2N3, C36C35S4N6 и C7C6C1C2, C30C29C24C25) составляют: 104.3(3)°, 83.5(5)° и - 132.9(4)°, 149.2(4)° соответственно. В комплексном соединении C1 реализуется одновременно и заторможенная, и заслоненная конформация двух фенильных фрагментов (Рис. 2.52) с латеральным смещением плоскостей фенильных фрагментов Δd относительно друг друга на 2.28Å и 0.68Å, соответственно.

H H

Рисунок 2.52. Конформации фенильных фрагментов в лигандах комплекса С1.

Для обеих конформаций данного комплекса реализуется внутримолекулярные π -стэкингвзаимодействия. Расстояние (d) между центроидами C7C8C10C11 (Cg1) и C13C14C16C17 (Cg2) фенильных фрагментов C6-C11 и C12-C17 составляет d_{C1/1}=3.806Å и практически не отличается от расстояния между центроидами C30C31C33C34 (Cg3) и C36C37C39C40 (Cg4) фенильных фрагментов C29-C34 и C35-C40 d_{C1/2}=3.803Å (Рис. 2.53 *a*). При этом значения торсионных углов τ_3 и τ_4 (C1C2N3S2, C24C25N6S4 и C12S2N3C2, C35S4N6C25) сульфонамидной группы, определяющих π -стэкинг-взаимодействие, близки, противоположены по знаку и составляют: 98.0(4)°, -99.6(4)° и -70.2(3)°, 87.1(3)°.

Рисунок 2.53 *а* и *б*. Внутримолекулярный π-стэкинг между фенильными фрагментами С6-С11 и С12-С17, а также С29-С34 и С35-С40 в комплексе С1.

Неожиданным оказалось, кроме π -стэкинга взаимодействия, наличие халькогенового и пникгогенового связывания между лигандами (Рис. 2.53 б). В последнее время в литературе подобного рода контактам уделяется повышенное внимание, так как они играют ключевую структурообразующую роль в химических и биологических системах, молекулярных кристаллах [138]. Тип взаимодействия между гетероатомами S, N одного лиганда и атомами углерода фенильного фрагмента при имидазотиазольных циклах другого лиганда, значения коротких контактов и суммы Ван-дер-Ваальсовых радиусов для комплекса C1 приведены в Таблице 2.3.

Тип взаимодействия	контакт	d, Å	$\sum r_{\text{вдв,}} \text{\AA}$	
	S1C45	3.480	3.55	
XAJIBKUI CHUBUC	S3C22	3.555		
	N1C41	3.137		
	N2C43	3.300	3 37	
пниктогеновое	N4 C18	3.200	5.57	
	N5 C20	3.990		

Таблица 2.3. Типы невалентных взаимодействий.

В комплексе C2 атом меди Cu1 (Рис. 2.54) также принимает сильно искаженную тетраэдрическую 2N2Cl-координацию [Cl1Cu1N4 96.2(2)°, Cl1Cu1Cl2 134.79(8)°, Cl1Cu1N1 97.2(2)°]. Два атома серы S2 и S4 принимают формы искаженных тетраэдров, как и в соединении L10, углы при связях составляют [O1S2O2 120.7(3)°, C12S2O2 108.3(4)°, N3S2O2 104.7(3)°; O4S4O3 121.0(4)°, C29S4O3 107.7(4)°, N6S4O3 105.6(3)°]. Имидазотиазольные фрагменты плоские, выходы гетероатомов N1, N2, S1 из плоскости C1C2C3C4C5 и N4, N5, S3 из плоскости C18C19C20C21C22 соответственно составляют [0.002Å, 0.036Å, 0.028Å; 0.001Å, 0.015Å, 0.043Å]. Плоскости фенильных заместителей C6-C11 и C23-C28 расположены под углом к плоскостям связанных с ними имидазотиазольных фрагментов [39.71° и 38.26°] соответственно. Плоскости Cl-фенильных фрагментов расположены практически параллельно плоскостям фенильных заместителей C6-C11 и C23-C28, углы между плоскостями соответственно [7.58° и 7.56°]. Атомы S2, S4 и атомы Cl3, Cl4 выходят из плоскостией соответственно.

Рисунок 2.54. Молекулярная структура комплекса C2 в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью, ORTEP.

В то время как комплекс C1 характеризуется одновременно и заторможенной, и заслоненной конформацией фенильных фрагментов, комплекс C2 характеризуется только заторможенной конформацией (Рис. 2.55). Взаимное расположение четырех фенильных фрагментов в комплексе C2 также связано с изменением торсионных углов и разворотом фенильных заместителей C6-C11 и C23-C28 относительно имидазотиазольных фрагментов. Значения торсионных углов τ_1 и τ_2 (C13C12S2N3, C30C29S4N6 и C7C6C1C2, C24C23C18C19) составляют: -89.8(7)°, 95.1(7)° и 140.8(9)°, -139.8(9)° соответственно. Латеральное смещение фенильных фрагментов Δd относительно друг друга на 0.97Å и 1.18Å соответственно. Хотя соединение L10 характеризуется заслоненной конформацией расположения двух фенильных фрагментов с латеральным смещением Δd относительно друг друга на 1.59Å.

Рисунок 2.55. Конформации фенильных фрагментов в лигандах комплекса С2.

C2 Для двух заторможенных конформаций в комплексе реализуется внутримолекулярные π-стэкинг-взаимодействия. Расстояние (d) межли центроидами С7С8С10С11 (Cg1) и С13С14С16С17 (Cg2) фенильных фрагментов С6-С11 и С12-С17 составляет d_{C1/1}=3.579Å и практически не отличается от расстояния между центроидами C24C25C27C28 (Cg3) и C30C31C33C34 (Cg4) для фенильных фрагментов C23-C28 и C29-C34 d_{C1/2}=3.620Å (Рис. 2.56). При этом значения торсионных углов т₃ и т₄ (C1C2N3S2, C18C19N6S4 И C12S2N3C2, C29S4N6C19) сульфонамидной группы, определяющих π-стэкингвзаимодействие, близки и противоположены по знаку, также как и в случае комплекса С1, и составляют: -85.0(1)°, 84.0(1)° и 79.8(6)°, -87.5(6)°.

Рисунок 2.56. Внутримолекулярные *π*-стэкинг-взаимодействия между фенильными фрагментами C6-C11 и C12-C17 а также C23-C28 и C29-C34 в комплексе C2.

2.2.2. QTAIM-анализ топологических данных металлокомплексов

Представляется интересным на примере комплекса C1 оценить теоретическими методами, как изменится внутримолекулярное π-стэкинг-взаимодействие ненасыщенных фрагментов при комплексообразовании.

При комплексообразовании две молекулы лиганда неэквивалентны, что отражается в количестве критических точек и их величине. Если условно обозначить фрагменты молекулы «левый» и «правый», то (Рис. 2.57 *a*), *π*-*π*-сопряжение в «левом» фрагменте характеризуется только одной связевой критической точкой (3, -1), между атомами С11...С17. Значение электронной плотности в этой точке составляет 4.71x10⁻³ е⁻Å⁻³, а расстояние 3.5 Å. «Правый» фрагмент характеризуется двумя критическими точками между атомами C34[…]C35 и C33[…]C38. Значения электронной плотности составляют 6.76×10^{-3} и 6.77×10^{-3} е⁻Å⁻³, при расстояниях 3.32 Å и 3.29 Å, соответственно. Как видно, в ходе комплексообразования *π*-*π*-сопряжение в ненасыщенных фрагментах становится неэквивалентным, «левый» фрагмент с более слабой *π*связью и «правый» с более сильным π -сопряжением. Кроме того следует отметить, что в π - π сопряжении активное участие принимают два имидазотиазольных фрагмента, сопрягаясь с фенильными заместителями в положении 2 (Рис. 2.57 б). Если также условно обозначить имидазотиазольные фрагменты как «левый» и «правый», то в них также наблюдается различное интенсивности π-π-сопряжение с фенильным кольцом. Так. по между «левым» имидазотиазольным фрагментом и фенильным циклом формируется четыре связевых критических точки между следующими парами атомов: S1^{...}C45, N2^{...}C42, C42^{...}C3 и N1^{...}C41 со значениями электронной плотности 7.31x10⁻³, 7.68 x10⁻³, 7.41 x10⁻³ и 8.61 x10⁻³ е⁻Å⁻³,

соответственно. При этом расстояния между парами атомов составляют: 3.48, 3.23, 3.28 и 3.14 Å. В «правом» имидазотиазольном фрагменте наблюдается только две критических точки, между атомами N4[…]C18 и S3[…]C22. Расстояния между атомами составляют 3.20 и 3.56 Å при соответствующих значениях электронной плотности 7.72 x10⁻³ и 6.20 x10⁻³ e⁻Å⁻³.

б

Рисунок 2.57. Критические точки (3,-1) типа в комплексе С1.

DORI-анализ также обнаруживает *π*-*π*-взаимодействие между ненасыщенными фрагментами комплекса C1 (Рис. 2.58).

Энергия стэкинг-взаимодействий для комплекса С1 так же, как и для рассмотренных выше перспективных лигандов, была оценена по уравнению Эспинозы. Ниже приведены данные (Табл. 2.4), отражающие зависимость расстояния между атомами от значения электронной плотности в критической точке между ними. Зависимость для тетрельных взаимодействий С[…]С сохраняется как для халькогеновых взаимодействий S[…]С, так и для пниктогеновых взаимодействий N[…]С – чем меньше расстояние между атомами, тем больше

электронная плотность в критической точке. Следует отметить, что при примерно одинаковых расстояниях между атомами, мы получили гораздо более сильное взаимодействия для пниктогеновых и халькогеновых систем, судя по электронной плотности.

Рисунок 2.58. DORI-анализ для молекулы комплекса С1. Зеленая область между ароматическими фрагментами характеризует эффективное взаимодействие двух *π*-систем.

Из анализа данных таблицы, при примерно одинаковых значениях электронной плотности, для халькогеновых и пниктогеновых взаимодействий, энергия N[…]C взаимодействий сильнее, чем энергия S[…]C взаимодействий, но все же слабее энергии водородных связей. N[…]C взаимодействие оказывается самым чувствительным по отношению к изменению расстояния между атомами.

Соединение	Расстояние R , Å	Электронная плотность $\rho x 10^{-3}$, e ⁻ Å ⁻³	Плотность потенциальной энергии V x10 ⁻³ , a.u.	Энергия взаимодействия Е, ккалл/моль E=V/2
C1	3.50	4.71	2.02	0.634 (π-π)
	3.32	6.76	3.43	1.076 (π-π)
	3.29	6.77	3.26	1.023 (π-π)
	2.67	9.06	5.39	1.691 (C-H N)
	3.48	7.31	3.29	1.033 (S C)
	3.23	7.68	4.42	1.387 (N C)
	3.28	7.41	3.74	1.174 (π-π)
	3.14	8.61	4.89	1.535 (N C)
	3.20	7.72	4.40	1.381 (N C)
	3.56	6.20	2.66	0.835 (S C)

Таблица 2.4. Оценка энергии невалентных внутримолекулярных взаимодействий.

2.2.3. Кристаллическая структура металлокомплексов

Комплекс С1 (красные ромбоэдры), в отличии от комплекса С2, кристаллизуется без растворителя в моноклинной сингонии в пространственной группе P2(1)/n. В независимой части кристаллической ячейки кристалла присутствует одна молекула комплекса.

Комплекс C1 способен образовывать димеры благодаря межмолекулярным N-H^{···}Cl водородным связям N₆-H_{6N}^{···}Cl₃ 2.368Å между одним из атомов хлора комплексообразователя одной молекулы комплекса и атомом водорода N-H-группы другой молекулы (Рис. 2.59). Димерные пары дополнительно стабилизируется межмолекулярным π -стэкингом (Рис. 2.59). Расстояние 3.796Å между центроидами C24C25N5C28S3 имидазотиазольных фрагментов двух соседних молекул комплекса.

Рисунок 2.59. Димеры комплекса С1.

В свою очередь межмолекулярные N-H[…]Cl водородные связи N₃-H_{3N}[…]Cl₄ 2.390Å между вторым атомом хлора комплексообразователя одной молекулы комплекса и атомом водорода N-H-группы другой молекулы (второй лиганд) соединяют димерные пары (Рис. 2.60), формируя 1D-мотив кристаллической структуры комплекса C1.

Рисунок 2.60. Димерные пары в 1D-мотиве комплекса С1.

Благодаря чередованию N-H^{···}Cl коротких контактов и расположению плоскостей имидазотиазольных фрагментов лигандов под углом 52.55° друг к другу, становится возможным построение сложной супрамолекулярной 3D архитектуры комплекса C1 (Puc. 2.61).

Рисунок 2.61. 3D модель комплексного соединения C1.

Независимая часть кристаллической ячейки комплекса C2 (оранжевые иглы) содержит одну молекулу соединения C2 и одну молекулу воды. Сформированный таким образом сокристалл характеризуется гексагональной сингонией и пространственной группой R-3.

Благодаря наличию молекулы воды в кристаллической ячейке комплекса C2 становится возможным димеризация двух соседних молекул (Рис. 2.62) посредством межмолекулярных водородных связей O_{1W} - H_{2W} ^{...} O_2 2.03(8)Å между одним из атомов кислорода сульфо-группы молекулы комплекса и одним из атомов водорода молекулы воды. А также за счет межмолекулярных O-H^{...}Cl водородных связей O_{1W} - H_{1W} ^{...}Cl₂ 2.31(9)Å между вторым водородом молекулы воды и одним из атомов хлора комплексообразователя. В димеризацию также вовлечены водородные N-H^{...}Cl связи N_3 - H_{3N} ^{...}Cl₁ 2.414Å между вторым атомом хлора комплексообразователя одной молекулы комплекса и атомом водорода N-H-группы другой молекулы. Димерные пары дополнительно стабилизируются межмолекулярным π -стэкингом, расстояние 3.579Å между центроидами C1C2N2C5S1 и C3C4N1C5N2 имидазотиазольных фрагментов двух соседних молекул комплекса.

Рисунок 2.62. Димеры комплекса С2.

Вторая пара димеров образуется благодаря тем же взаимодействиям, что и первая (Рис. 2.63), но, при участии N-H^{...}O водородных связей N₆-H_{6N}^{...}O_{1W} 1.944Å между атомом кислорода молекулы воды и атомом водорода N-H-группы молекулы комплекса. Следует отметить, что различные пары димеров располагается в кристалле под углом 90° друг к другу.

Рисунок 2.63. Соседние димерные пары комплекса C2, ориентированные под углом 90°. В кристаллической структуре димерные пары, чередуясь, образуют 2D мотив кристаллической упаковки комплекса C2 (Рис. 2.64).

Рисунок 2.64. Димерные пары в 2D-мотиве комплекса С2.

Наличие межмолекулярных C-H[…]Cl водородных связей (Рис. 2.65) C₃₃-H₃₃[…]Cl₂ 2.793Å между одним из атомов хлора комплексообразователя и одним из атомов водорода хлорфенильного заместителя в лиган-де приводит к перпендикулярному расположению 2D мотивов димерных пар относительно друг друга.

Рисунок 2.65. Стабилизация 3D модели комплекса C2 межмолекулярными водородными связями C-H^{...}Cl типа и межмолекулярным t-стэкингом.

Формирование сложной 3D супрамолекулярной архитектуры комплекса C2 осуществляется через t-стэкинг-взаимодействия между центроидом хлорфенильного фрагмента лиганда и одним из водородов H7 фенильного заместителя соседнего лиганда (Рис. 2.65). Расстояние между центроидом хлорфенильного заместителя лиганда и одним из водородов составляет 3.061Å.

Следует отметить, что основными строительными блоками формирования кристаллических архитектур комплексов C1 и C2 являются димеры. Формирование кристаллических структур осуществляется через водородные связи типа C-H···Cl, N-H···O, S-O···H и N-H···Cl. Однако, в отличие от перспективных лигандов, рассмотренных выше (Раздел 2.1.), в формирование кристаллической архитектуры комплексов вовлекаются ароматические фрагменты, в которых реализуется внутримолекулярное π -стэкинг-взаимодействие.

2.3. Сульфонамидные производные [1,3]тиазоло[3,2-а]бензимидазолов и имидазо[2,1-b][1,3]тиазолов в качестве координационных полимеров 2.3.1. Молекулярная структура координационных полимеров

Синтезированные новые производные [1,3]тиазоло[3,2-*а*]бензимидазолов и имидазо[2,1*b*][1,3]тиазолов использованы нами в качестве строительных блоков при сборке координационных полимеров Р1, Р2 и Р3.

По данным PCA, в координационном полимере P1 атом натрия Na1 принимает форму тригональной бипирамиды [O1S2O2 116.0(2)°, C12S2O2 106.0(2)°, N3S2O2 105.2(2)°] с координацией на атом азота N3, два атома кислорода O2 и два атома кислорода двух молекул воды (Puc. 2.66).

Атом серы S2 также принимают форму искаженного тетраэдра, валентные углы в пределах погрешности близки и составляют [O1S2O2 116.0(2)°, C12S2O2 106.0(2)°, N3S2O2 105.2(2)°]. Имидазотиазольный фрагмент плоский, выход гетероатомов N1, N2 и S1 из плоскости C1C2C3C4C5 составляет [0.018Å, 0.023Å, 0.057Å] соответственно. Плоскость C7C8C10C11 фенильного заместителя C6-C11 расположена под углом 27.00° к C1C2C3C4C5-плоскости имидазотиазольного фрагмента. Плоскость C13C14C16C17 фенильного фрагмента C12-C17 расположена практически параллельно плоскости C7C8C10C11 фенильного заместителя C6-C11, угол между плоскостями 12.92°.

Рисунок 2.66. Молекулярная структура элементарного звена координационного полимера Р1 в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью, ORTEP.

Для полимера P1, как и для соединения L2, характерна заторможенная конформация фенильных фрагментов, в то время как для соединения L1 с тяжелым атомом хлора характерна заслоненная конформация фенильных фрагментов (Рис. 2.67). Различия в конформации фенильных фрагментов также обусловлены изменением торсионных углов τ_1 и τ_2 . Так для координационного полимера P1 значения торсионных углов τ_1 и τ_2 (C13C12S2N3 и C7C6C1C2) составляют 87.0(3)° и -27.9(6)°, а для L1 значения торсионных углов τ_1 и τ_2 (C13C12S2N3 и C7C6C1C2) и C7C6C1C2) составляют 83.1(1)° и -36.6(2)°, соответственно и для L2 74.5(3)° и -45.9(4)°.

Следует отметить, что в координационном полимере P1, также как и в лиганде L2 реализуется заторможенная конформация фенильных фрагментов. Для P1 латеральное смещение Δd составляет 1.56Å

Рисунок 2.67. Конформации фенильных фрагментов в координационном полимере Р1 и перспективных лигандах L2 и L1.

Для заторможенной конформации полимера P1 также реализуется внутримолекулярное *π*-стэкинг-взаимодействие. Расстояние (d) между центроидами C7C8C10C11 (Cg1) и
С13С14С16С17 (Cg2) фенильных фрагментов C6-C11 и C12-C17 составляет d_{P1} =3.727Å и практически не отличается от значений (d), характерных для L1 и L2 d_{L1} =3.811Å и d_{L2} =3.692Å, соответственно (Рис. 2.68). Определяющим фактором π -стэкинг-взаимодействия, как уже говорилось выше, является конформация сульфонамидной группы, характеризующаяся торсионными углами τ_3 и τ_4 . Значения торсионных углов τ_3 и τ_4 (C1C2N3S2 и C12S2N3C2) для координационного полимера P1 составляют -93.2(4)° и 81.7(3)°. Значения аналогичных торсионных углов сульфонамидной группы τ_3 и τ_4 (C1C2N3S2 и C12S2N3C2) для соединений L1 и L2 составляют -87.4(1)° и 96.18(9)°, -92.5(3)° и 74.3(2)° соответственно.

Рисунок 2.68. Внутримолекулярное *п*-стэкинг-взаимодействие между фенильными фрагментами C6-C11 и C12-C17 в элементарном звене координационного полимера P1.

Необходимо отметить, что координационный полимер P1 также состоит из двух энантиомеров в соотношении 1:1 (Рис. 2.69).

Рисунок 2.69. Пространственное наложение двух энантиомеров для Р1.

Соединения 3-го ряда (Табл. П.1.1) представлены двумя различными металлорганическими координационными полимерами Р2 и Р3, которые формируются из

одного и того же перспективного лиганда и атома калия с различной координационной способностью.

Так, в полимере P2 атом калия K1 принимает форму искаженной треугольной пирамиды с координацией на атом серы S1 и два атома азота N1 и N2, углы при вершине K1 составляют [S1K1N3 116.25(8)°, N3K1N1 99.90(1)°, N1K1S1 50.75(8)°] (Рис. 2.70).

В полимере РЗ присутствуют два атома калия (К2 и К3, по 0.5 атома каждого калия на одну молекулу лиганда). Атом калия К2 принимают форму искаженной треугольной пирамиды с координацией на атом азота N3, атом серы S1 и соседний атом калия К2, углы при вершине К2 составляют [S1K2N3 87.94(5)°, N3K2K2 103.60(6)°, K2K2S1 141.03(4)°] (Рис. 2.70).

Рисунок 2.70. Молекулярная структура элементарного звена координационного полимера Р2 и Р3 в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью, ORTEP.

Атом серы S2 (Рис. 2.70) так же, как и в соединениях описанных выше, принимают форму искаженного тетраэдра, углы при вершинах составляют: для P2 - [O1S2O2 121.1(2)°, C12S2O2 107.9(2)°, N3S2O2 106.8(2)°]; и для P3 - [O1S2O2 121.4(1)°, C12S2O2 107.5(1)°, N3S2O2 107.7(1)°]. Имидазотиазольный фрагмент плоский, выход гетероатомов N1, N2 и S1 из плоскости C1C2C3C4C5 составляет: для P2 - [0.001Å, 0.041Å, 0.041Å] и для P3 - [0.011Å, 0.042Å, 0.061Å]. Плоскость C7C8C10C11 фенильного заместителя C6-C11 расположена под углом к C1C2C3C4C5-плоскости имидазотиазольного фрагмента, угол между плоскостями составляет 35.21° и 35.44° для P2 и P3 соответственно. Плоскость C13C14C16C17 фенильного фрагмента C12-C17 расположена практически параллельно плоскости C7C8C10C11 фенильного заместителя C6-C11, угол между плоскостями составляет 10.30° и 15.40° для P2 и P3 соответственно. Плоскость C19C20C22C23 фенильного фрагмента C18-C23 расположена практически параллельно плоскости C1C2C3C4C5 имидазотиазольного фрагмента, угол между плоскостями составляет для P2 4.47° и для P3 12.28°.

Для обоих координационных полимеров характерна заторможенная конформация фенильных фрагментов (Рис. 2.71), латеральный сдвиг Δd составляет 0.99Å и 0.98Å для P2 и P3 соответственно. Координационное число атома К не оказывает существенного влияния на конформацию лиганда. Вид конформации фенильных фрагментов, как уже описывалось выше, обусловлен торсионными углами τ_1 и τ_2 . Для координационных полимеров P2 и P3 значения торсионных углов τ_1 и τ_2 (C13C12S2N3 и C7C6C1C2) составляют 78.5(4)° и -35.8(8)°, и 96.9(2)° и -37.4(4)° соответственно.

Рисунок 2.71. Конформации фенильных фрагментов в координационных полимерах *a*) Р2 и б) Р3.

Для обоих конформаций реализуется внутримолекулярное π-стэкинг-взаимодействие (Рис. 2.72).

Рисунок 2.72. Внутримолекулярное *п*-стэкинг-взаимодействие между фенильными фрагментами C6-C11 и C12-C17 в полимерах *а*) Р2 и *б*) Р3.

Расстояния (d) между центроидами C7C8C10C11 (Cg1) и C13C14C16C17 (Cg2) фенильных фрагментов C6-C11 и C12-C17 имеют близкие значения и составляют $d_{P2}=3.747$ Å $d_{P2}=3.871$ Å. Значения торсионных углов τ_3 и τ_4 (C1C2N3S2 и C12S2N3C2) для полимеров P2 и P3 составляют -93.7(6)° и 78.1(4)°, и -95.7(3)° и 86.4(2)°, соответственно.

Координационные полимеры Р2 и Р3 также представлены рацематной смесью двух пространственных энантиомеров в соотношении 1:1 (Рис. 2.73).

Рисунок 2.73. Пространственное наложение двух энантиомеров для полимеров *a*) Р2 и *б*) Р3.

2.3.2. QTAIM-анализ топологических данных координационных полимеров

Согласно экспериментальным данным РСА, расстояние между атомами С7 и С12 в полимере Р1 составляет 3.36Å, а между атомами С8 и С14 3.63Å. Такое межатомное расстояние при параллельном расположении бензольных колец предполагает возможность реализации π -стэкинга-взаимодействия. Теоретическая оценка электронной плотности между вышеуказанными атомами говорит о формировании связевой критической точки типа (3,-1). Значения электронной плотности ρ в критических точках (3, -1) составляют 6.25х10⁻³ e⁻Å⁻³ и 4.29х10⁻³ e⁻Å⁻³, соответственно (Рис. 2.74). Межплоскостное расстояние в данном случае составляет 3.52 – 3.99 Å.

Рисунок 2.74. Критические связевые точки (3,-1) типа в полимере Р1. Красными кружками отмечены точки (3,-1) типа, отвечающие *π*-стэкингу.

«Индикатор плотности перекрывания областей» DORI (Рис. 2.75) предсказывает *π*взаимодействие между параллельно расположенными бензольными кольцами.

Рисунок 2.75. DORI-анализ для элементарного звена полимера Р1. Зеленая область между ароматическими кольцами характеризует эффективное взаимодействие двух *π*-систем.

Ниже (Табл. 2.5) приведены расчетные данные, отражающие зависимость между расстоянием и электронной плотностью при π -стэкинг-взаимодействии для полимера Р1. Из анализа данных следует, что зависимость такая же, как и для перспективных лигандов. Энергия взаимодействия находится в таких же пределах – меньше 1 ккалл/моль.

Таким образом, можно сделать вывод, что для исследованных производных сульфонамидов внутримолекулярный π -стэкинг между ароматическими фрагментами является стуктурным свойством лигандов, и их металлокомплексов и координационных полимеров.

Соединение	Расстояние	Электронная	Плотность	Энергия
	R , Å	плотность	потенциальной	взаимодействия
		$\rho x 10^{-3}$, e ⁻ Å ⁻³	энергии	Е, ккалл/моль
			V x10 ⁻³ , a.u.	E = V/2
P1	3.36	6.25	3.01	0.945 (π-π)
	3.63	4.29	1.87	0.587 (π-π)
	2.88	7.17	4.14	1.296 (C-H N)
	2.66	9.23	5.41	1.698 (C-H N)

Таблица 2.5. Оценка энергии невалентных внутримолекулярных взаимодействий.

2.3.3. Кристаллическая структура координационных полимеров

Бесцветные пластины координационного полимера Р1 кристаллизуются в моноклинной сингонии в пространственной группе Р2(1)/с.

Структурный мотив 1D координационного полимера P1 представляет из себя ленты вдоль оси с (Рис. 2.76 *a*), дальнейшая упаковка которых зависит от присутствия тех или иных взаимодействий. Следует отметить, что в 1D-лентах, благодаря пространственному расположению фенильных заместителей, прослеживается чередование π- и t-стэкинга (Рис. 2.76 *б*).

1D-ленты полимера P1 дополнительно стабилизируются за счет межмолекулярных водородных O-H[…]O связей вдоль оси c O_{1W}-H_{2W}[…]O₁ 1.983Å, образованных между одним из атомов кислорода сульфо-группы молекулы имидазотиазолов и одним из атомов водорода совместно кристаллизованных молекул воды (Рис. 2.76 e).

Отметим, что 3D стуктурный мотив полимера представляет архитектуру, в которой 1Dленты связаны между собой различными водородными связями. Так, вдоль оси *b* расположение 1D-лент становится возможным благодаря межмолекулярным водородным O-H[…]N связям O_{1W} - H_{1W} […]N₁ 2.067Å между атомом азота имидазотиазольного фрагмента одной молекулы и одним из атомов водорода совместно кристаллизованных молекул воды; а так же коротким O[…]S контактам O_1 […]S₁ 3.247(3)Å между атомом серы имидазотиазольного фрагмента одной молекулы и одним из атомов кислорода сульфо-группы (Puc. 2.77).

Рисунок 2.76. *а*) 1D полимерная лента соединения P1, *б*) ароматические фрагменты, связанные π- и t-стэкингом, *в*) короткие контакты внутри ленты.

Рисунок 2.77. 2D архитектура полимера P1. Межмолекулярные контакты 1 –лент. Вдоль оси *b* 1D-ленты полимера P1 также стабилизируются межмолекулярным πстэкингом (Рис. 2.78), о наличии которого можно говорить исходя из расстояния 3.865Å между центроидами C3C4C5 имидазотиазольных фрагментов двух соседних молекул.

Рисунок 2.78. Фрагмент 2D-сборки полимера Р1. Межмолекулярный *π*-стэкинг. Атомы водорода опущены для упрощения.

Расположение 1D полимерных цепей вдоль оси *а* обусловлено наличием C-H^{...}</sup>H-O коротких взаимодействий C₁₉-H₁₉^{<math>...}</sup>H_{4w}-O_{2w} 2.4553Å между одним из атомов водорода фенильного кольца молекулы имидазотиазола и одним из атомов водорода одной из двух координированных молекул воды (Рис. 2.79).</sup></sup>

Рисунок 2.79. Стабилизация 1D полимерных цепей вдоль оси *а*. 3D мотив соединения

Сформированные 1D-слои укладываются стопками, приводя к сложной супрамолекулярной архитектуре (Рис. 2.80 *a*).

P1.

Рисунок 2.80. *а)* стопочная 3D архитектура полимера P1, *б)* фрагмент архитектуры полимера P1, ленточный мотив, сформированный ароматическими фрагментами смежных макромолекул.

В случае натриевого полимера Р1 π- и t-стэкинг-взаимодействия в лигандной части полимера формируют отдельный структурный ленточный мотив, состоящий из ароматических фрагментов. При формировании кристаллической структуры π-стэкинг-взаимодействие между

лентами приводит к образованию общего слоя, включающего только ароматические фрагменты смежных лент (Рис. 2.80 б).

Бесцветные призмы координационного полимера Р2 кристаллизуются в триклинной сингонии в пространственной группе Р-1.

Для соединения Р2 (Рис. 2.81) кристаллическая структура формируется через координацию соседних лигандов на атом калия К1, выстраивая полимерные 1D-цепи вдоль оси *а*.

Рисунок 2.81. 1D-цепь полимера Р2.

2D моделирование (оси a и c) соединения P2 становится возможным благодаря tстэкингу C₁₆-H₁₆^{...}C₃ 2.817Å между соседними 1D-лентами (Рис. 2.82). Каждая 1D-цепь полимера содержит молекулы только одного энантиомера.

Рисунок 2.82. Межмолекулярные взаимодействия 1D полимерных цепей энантиомеров соединения P2.

3D модель вдоль оси *b* для соединения P2 достраивается благодаря водородным C-H[…]O связям двух соседних молекул C₉-H₉[…]O₂ 2.681Å (Puc. 2.83 *a*).

Рисунок 2.83. 3D мотив соединения P2: *а*) межмолекулярные контакты слоя и *б*) супрамолекулярная архитектура полимера.

Сформированная кристаллическая архитектура стабилизируется t-стэкинг-взаимодействием. Расстояние между центроидом C19C20C22C23 одной молекулы и атомом водорода H8 фенильного заместителя другой составляет 3.582Å. Супрамолекулярная архитектура полимера P1 с паркетной укладкой показана ниже (Рис. 2.83 б).

Координационный полимер Р3, как и Р2, кристаллизуются в триклинной сингонии в пространственной группе Р-1, и также представляет собой бесцветные кристаллические призмы.

Для полимера РЗ кристаллическая структура образуется через координацию соседних лигандов на атомы калия К2 и К3, при этом сформированная 3D-архитектура имеет разветвленный мотив. Образование связи К2-К2 ориентирует полимерные цепи относительно оси *c*, а образование связи К3-К3 достраивает полимер по оси *b*, формируя сложную супрамолекулярную структуру (Рис. 2.84).

Рисунок 2.84. 3D мотив полимера Р3: *а*) проекция на ось *с* и *б*) проекция на ось *b*.

2.4. Заключение

Методом рентгеноструктурного анализа показано наличие внутримолекулярного π стэкинга в производных сульфонамидового ряда. Наличие невалентных стэкингвзаимодействий подтверждено методами квантовой химии. Энергия π - π -взаимодействия по оценке с помощью уравнения Эспинозы находится в пределах 0.5-0.9 ккал/моль, что согласуется с экспериментальными данными по оценке этого взаимодействия Килшнера с соавторами [140]. Несмотря на малую величину каждого из таких взаимодействий, количество таких взаимодействий является решающим фактором, определяющим пространственное строение [141].

Установлено, что нельзя однозначно говорить о влиянии природы заместителя на внутримолекулярный π-стэкинг, поскольку донорно-акцепторные свойства заместителя не являются единственным определяющим фактором [69], важны: объем, ориентация заместителя, а также его межмолекулярные контакты.

Доказано, что при формировании металлокомплексных соединений и координационных полимеров на базе сульфониламинозамещенных производных имидазо[2,1-*b*]тиазолов, внутримолекулярный π -стэкинг в лигандах сохраняется. Установлено, что только в металлокомплексных соединениях и координационном полимере P1 наряду с

внутримолекулярным *π*-стэкингом, реализуется межмолекулярный с расстояниями близкими к внутримолекулярным *π*-*π*-взаимодействиям в лигандах.

Таким образом, анализ структурных мотивов, формирующих кристаллические архитектуры исследованных производных сульфонамидов, позволяет сделать вывод, что основными связующими звеньями являются межмолекулярный π - и t-стэкинг, а так же водородные связи C-H^{...}O и N-H^{...}N типа. Ароматические фрагменты, в которых реализуется внутримолекулярное π -стэкинг-взаимодействие, являются основными строительными блоками определяющими супрамолекуляную архитектуру кристаллов.

Можно рекомендовать рассмотреть соединения L1, L2, L4-L6, L10, L11 как перспективные лиганды для сборки металлокомплексных конструкций Cl2MetL2 типа и координационных полимеров. На основе анализа *π*-*π*-взаимодействий в металлокомплексах и координационном полимере P1 можно ожидать потенциальную способность к переносу заряда, что согласуется с экспериментальными работами Шнебелли с соавторами [142]. Это делает подобные соединения перспективными элементами молекулярной электроники.

ГЛАВА 3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

3.1. Методики получения новых гетероциклических производных сульфонамидов

Синтез 15 новых перспективных лигандов – сульфониламинозамещенных производных имидазолов, их комплексов (2 примера соединений) и координационных полимеров на их основе (3 примера соединений) проведен в Иркутском институте химии им. А.Е. Фаворского СО РАН в лаборатории галогенорганических соединений.

Методика синтеза L1, L2, L3 [135]. Смесь имина (Табл. 3.1) 1а (0.460 г, 1.4 ммоль) и бензимидазолтиола 2а (0.255 г, 1.7 ммоль) в о-ксилоле (10 мл) кипятили с обратным холодильником в течение 5 часов. Смесь охлаждали, фильтровали, и твердый продукт промывали диэтиловым эфиром (30-50 мл) и горячим метанолом (10 мл). Реакции 2а с иминами 1b (0.480 г, 1.4 ммоль) или 1с (0.500 г, 1.4 ммоль) проводили аналогичным образом.

ArSO	Ph R^{1} R^{1} R^{2}	$ \xrightarrow{N}_{N} SH \xrightarrow{R}_{R^2} \xrightarrow{N}_{N} Ph $
	1	2
Имин 1 (Ar)	Имидазол тиол 2	Имидазотиазол
1c (4-ClC ₆ H ₄)	N N N H 2a	NHSO ₂ C ₆ H ₄ Cl-4
1b (4-MeC ₆ H ₄)	2a	$ \begin{array}{c} NHSO_2C_6H_4Me-4\\ N & Ph\\ L2 \end{array} $
1a (Ph)	2a	$NHSO_2Ph$ N $PhL3$
1c (4-ClC ₆ H ₄)	Ph Ph N SH H	Ph $NHSO_2C_6H_4CI-4$ Ph N Ph Ph S

Методика синтеза L4, L5, L6 [135]. Смесь имина 1a (0.460 г, 1.4 ммоль) и 4,5дифенилимидазол-2-тиола 2b (0.429 г, 1.7 ммоль) в о-ксилоле (10 мл) кипятили с обратным холодильником в течение 5 часов. Смесь охлаждали, фильтровали и твердый продукт

87

промывали диэтиловым эфиром (30-50 мл). Очищенный с помощью колоночной хроматографии на силикагеле, ацетонитрил: хлороформ (1: 9) использовали в качестве элюента. Реакции 2b с иминами 1b (0.480 г, 1.4 ммоль) или 1c (0.500 г, 1.4 ммоль) проводили аналогичным образом.

Методика синтеза L7, L8, L9 [135]. Смесь имина 1a (0.40 г, 1.4 ммоль) и 4фенилимидазол-2-тиола 2c (0.300 г, 1.7 ммоль) в о-ксилоле (10 мл) кипятили с обратным холодильником в течение 5 часов. Смесь охлаждали, фильтровали, твердый продукт промывали диэтиловым эфиром (30 мл). Реакции 2c с иминами 1b (0.480 г, 1.4 ммоль) или 1c (0.500 г, 1.4 ммоль) проводили аналогичным образом.

Методика синтеза L10, L11, L12 [135]. Смесь имина 1а (0.460 г, 1.4 ммоль) и имидазол-2тиола 2d (0.170 г, 1.7 ммоль) в ДМФА (10 мл) нагревали при 100 ° С в течение 5 часов. Смесь охлаждали, выливали в воду (100 мл). Через один день выпавший осадок отфильтровывают и очищают колоночной хроматографией на силикагеле, в качестве элюента используют ацетонитрил-хлороформ (2: 3). Реакции 2d с иминами 1b (0.480 г, 1.4 ммоль) или 1c (0.500 г, 1.4 ммоль) проводили аналогичным образом.

L15 Метолика синтеза L13. L14. [137]. (Табл. 3.2) N-(1-Арил-2,2,2трихлорэтил)аренсульфонамид 1е (1.3 ммоль), 2-аминопиридин 2е (2,6 ммоль), К2СОЗ (5,2 ммоль) и DABCO (1.3 ммоль) перемешивали при кипячении с обратным холодильником в CH3CN (15 мл) в течение 5 часов. Затем реакционную массу смешивали с водой (70 мл), подкисляли до pH 6 и экстрагировали CH2Cl2 (3 × 15 мл). Экстракт промывали рассолом и сушили над MgSO4. Растворитель выпаривали, остаток очищали колоночной хроматографией (SiO2, этилацетат: гексан в виде 2: 1). Реакцию N-(1-Арил-2,2,2-трихлорэтил)аренсульфонамида 1f 2-аминопиридином 2f(1.3)N-(1-Арил-2,2,2с ммоль) И реакцию трихлорэтил)аренсульфонамида 1g (1.3 ммоль) с 2-аминопиридином 2g проводили аналогичным образом.

Кристаллизация L1-L16. Все соединения растворяли в минимальном количестве сухого ДМФА, при необходимости фильтровали и ставили в эксикатор над водой. Постепенное насыщение ДМФА водой приводило к образованию кристаллов. Аккуратно сливали растворитель, промывали небольшим количеством холодного диэтилового эфира и сушили на воздухе.

Методика синтеза С1, С2. Исходный (Табл. 3.3) имидазо[2,1-*b*][1,3]тиазол (0,6 ммоль) растворяли в 20 мл смеси ТГФ – метанол (1:1). При перемешивании небольшими порциями добавляли CuCl₂*2H₂O (0.3 ммоль) растворенный в 5 мл воды. Далее переливали и оставляли упариваться в неплотно закрытой пробирке. Через неделю выпавшие кристаллы отделяли и высушивали на воздухе.

 Таблица
 3.2.
 Синтез
 имидазопиридинов
 L13-L15
 из
 N-(1-Арил-2,2,2

 трихлорэтил)аренсульфонамидов 1 и 2-аминопиридинов 2
 2

$\begin{array}{ccc} ArSO_2NH & CCI_3 \\ Ar' & + & N \\ R^2 \\ 1 & 2 \end{array} \xrightarrow{R^2} R^1 \xrightarrow{R^2} N \xrightarrow{NHSO_2Ar} NHSO_2Ar \\ R^1 & R^2 \end{array}$					
Ar, Ar'	R^1, R^2	Имидазопиридин			
$1e (4-ClC_6H_4, 4-MeC_6H_4)$	2e (H, H)	C ₆ H ₄ Me-4 NHSO ₂ C ₆ H ₄ Cl-4 L13			
If $(4-CiC_6H_4, Ph)$	2f (H, Cl)	CI N NHSO ₂ C ₆ H ₄ CI-4 L14			
1g (4-MeC ₆ H ₄ , Ph)	2g (Me, H)	Me NHSO ₂ C ₆ H ₄ Me-4 L15			

L

3.1

Таблица 3.3. Синтез комплексов имидазотиазолов С1 и С2 из перспективных лигандов L7 и L10.

Лиганд	Ar	R	Комплекс имидазотиазола
L7	(4-ClC ₆ H ₄)	Ph	$\begin{array}{c} & NHSO_2C_6H_4CI\text{-4} \\ & & Ph & Ph \\ & Ph & Ph \\ & CI - Cu - CI \\ & S - N & Ph \\ & Ph & Ph \\ & Ph & N & Ph \\ & Ph & N & NHSO_2Ar \\ & CI \end{array}$
L10	4-ClC ₆ H ₄	H	$\begin{array}{c} & NHSO_2C_6H_4CI_4 \\ & \swarrow \\ & N \\ & $

Методика синтеза Р1. Растворяли *N*-(2-фенил[1,3]тиазоло[3,2-*a*]бензимидазол-3ил)бензолсульфонамид (0.6 ммоль) в 20 мл метанола. Затем в раствор прикапывали при перемешивании 0.6 ммоль NaOH растворенного в 5 мл воды. Оставляли упариваться на две недели в колбе с неплотно закрытой колбой. Образовались прозрачные бесцветные кристаллы.

Методика синтеза Р2, Р3. Растворяли КОН (0.6 ммоль - для получения Р2; 2.4 ммоль для получения Р3) в 15 мл воды, затем в этот раствор при перемешивании засыпали *N*-(2,6дифенилимидазо[2,1-*b*][1,3]тиазол-3-ил)бензолсульфонамид (0.6 ммоль), перемешивали до полного растворения имидазотиазола. Оставляли упариваться на две недели в колбе с неплотно закрытой колбой. При упаривании на 2/3 появлялись кристаллы, их отфильтровывали и высушивали.

3.2. Результаты физико-химических методов анализа

Основные результаты получены с использованием приборов Байкальского Аналитического Центра коллективного пользования ИрИХ СО РАН.

Спектры ЯМР регистрировали на спектрометре Bruker DPX 400 (¹H 400.13 МГц; ¹³C 100.61 МГц) при 25° С с использованием HMDS в качестве внутреннего стандарта. Химические сдвиги представлены в значениях ppm (δ) и константах связи (J) в Гц.

ИК-спектры регистрировали на спектрофотометре Bruker IFS-25 в KBr. Все точки плавления были измерены на приборе Kofler Micro Hot Stad. Элементный анализ для C, H, N и S был получен с использованием анализатора Thermo Finnigan Flash серии 1112 EA. Элементный анализ на Cl определяли титрованием продуктов сгорания нитратом ртути в присутствии дифенилкарбазона.

4-Хлор-*N***-(2-фенил[1,3]тиазоло[3,2-***а***]бензимидазол-3-ил)бензолсульфонамид (L1).** Белое твердое вещество. Выход 66%, 407 мг, t_{пл} 280-282 °C. ИК (КВг, v, cm–1): 1616, 1584, 1464, 1451 (C=C, C=N), 1328, 1133 (SO2). ¹H ЯМР (400 МНz, DMSO-*d*6): δ 7.10-7.52 (m, 11H), 7.68-7.81 (m, 1H), 8.05-8.16 (m, 1H) ppm. ¹³C ЯМР (101 МНz, DMSO-d6): δ 112.16, 118.58, 119.46, 120.97, 123.51, 124.20, 127.95, 128.23, 128.49, 128.67, 128.88, 129.04, 129.81, 138.57, 138.57, 138.18, 147.00, 150.40. Рассчитано для C₂₁H₁₄N₃O₂S₂Cl (439.94), %: C, 57.33; H, 3.21; N, 9.55; S, 14.58; найдено, %: C, 57.20; H, 3.17; N, 9.74; S, 14.79.

4-Метил-*N***-**(2-фенил[1,3]тиазоло[3,2-*а*]бензимидазол-3-ил)бензолсульфонамид (L2). Белое твердое вещество. Выход 69%, 405 мг, t_{пл} 269-271 °C. ИК (КВг, v, сm–1): 1618, 1598, 1468, 1446 (C=C, C=N), 1349, 1168 (SO2). ¹H ЯМР (400 МНz, DMSO-*d6*): δ 2.20 (s, 3H), 6.86-7.01 (m, 2H), 7.08-7.46 (m, 9H), 7.73 (m, 1H), 8.10 (m, 1H). ¹³C ЯМР (101 МHz, DMSO-*d6*): δ 20.89, 112.29, 118.51, 119.67, 120.88, 123.46, 124.14, 126.36, 127.86, 128.36, 128.59, 128.96, 129.36, 129.84, 130.34, 136.87, 143.09, 143.44, 144.25, 147.01, 150.36. Рассчитано для C₂₂H₁₇N₃O₂S₂ (419.52), %: C, 62.99; H, 4.08; N, 10.02; S, 15.29; найдено, %: C, 62.87; H, 3.95; N, 10.23; S, 15.39.

N-(2-Фенил[1,3]тиазоло[3,2-*а*]бензимидазол-3-ил)бензолсульфонамид (L3). Белое твердое вещество. Выход 58%, 329 мг, t_{пл} 270-271 °C. ИК (KBr, v, cm−1): 1619, 1596, 1468, 1448 (C=C, C=N), 1348, 1171 (SO2). ¹Н ЯМР (400 MHz, DMSO-*d*6): δ 7.06-7.44 (m, 10H), 7.45-7.61 (m, 2H), 7.73 (m, 1H), 8.08 (m, 1H), 11.35 (br. s, 1H). ¹³С ЯМР (101 MHz, DMSO-*d*6): δ 112.15, 118.51,

91

119.59, 120.84, 123.42, 124.08, 126.28, 127.81, 128.65, 128.74, 128.85, 129.00, 129.79, 132.96, 140.22, 147.03, 150.34. Рассчитано для C₂₁H₁₅N₃O₂S₂ (405.49), %: C, 63.85; H, 3.73; N, 10.36; S, 15.82; найдено, %: C, 63.98; H, 3.62; N, 10.41; S, 15.97.

4-Хлор-*N***-**(**2**,**5**,**6**-трифенилимидазо[**2**,**1**-*b*][**1**,**3**]тиазол-**3**-ил)бензолсульфонамид (**L**4). Желтое твердое вещество. Выход 50%, 380 мг, t_{пл} 136-138 °С. ИК (КВг, v, сm–1): 1603, 1477, 1433 (C=C, C=N), 1366, 1169 (SO2). ¹H ЯМР (400 МНz, DMSO-*d*6): δ 7.03-7.30 (m, 12H), 7.30-7.57 (m, 7H), 10.52 (br.s, 1H). ¹³C ЯМР (101 МНz, DMSO-*d*6): δ 48.55, 119.02, 124.27, 126.78, 126.92, 127.96, 128.03, 128.07, 128.09, 128.29, 128.44, 128.50, 128.72, 128.96, 129.19, 131.98, 134.22, 137.52, 139.16, 142.41, 142.84. Рассчитано для C₂₉H₂₀N₃O₂S₂Cl (542.07), %: C, 64.29; H, 3.72; N, 7.75; S, 11.83; найдено, %: C, 64.39; H, 3.68; N, 7.88; S, 11.94.

4-Метил-*N***-**(**2**,**5**,**6**-трифенилимидазо[2,1-*b*][**1**,**3**]тиазол-**3**-ил)бензолсульфонамид (L5). Желтое твердое вещество. Выход 55%, 400 мг, t_{пл} 130-132 °C. ИК (КВг, v, cm–1): 1600, 1504, 1477 (C=C, C=N), 1362, 1166 (SO2). ¹H ЯМР (400 МНz, DMSO-*d*6): δ 2.16 (s, 3H), 6.75-6.84 (m, 2H), 7.05-7.13 (m, 4H), 7.16-7.28 (m, 6H), 7.38-7.42 (m, 2 H), 7.45-7.52 (m, 5H), 10.24-10.34 (m, 1H). ¹³C ЯМР (101 МНz, DMSO-*d*6): δ 20.86, 79.18, 119.38, 124.43, 126.16, 126.89, 126.92, 127.01, 128.03, 128.15, 128.20, 128.21, 128.49, 129.04, 129.11, 129.32, 132.05, 134.30, 137.48, 142.38, 142.70, 142.88. Рассчитано для C₃₀H₂₃N₃O₂S₂ (521.65), %: C, 69.07; H, 4.44; N, 8.06; S, 12.29; найдено, %: C, 68.97; H, 4.51; N, 8.15; S, 12.36.

N-(2,5,6-Трифенилимидазо[2,1-*b*][1,3]тиазол-3-ил)бензолсульфонамид (L6). Белое твердое вещество. Выход 42%, 302 мг, t_{пл} 236-238 °C. ИК (KBr, v, cm−1): 1601, 1588, 1474, 1467 (C=C, C=N), 1368, 1170 (SO2). ¹H ЯМР (400 МНz, DMSO-*d*6): δ 7.01-7.33 (m, 13H), 7.41-7.44 (m, 2H), 7.46-7.50 (m, 5H), 10.4 (br.s, 1H). ¹³C ЯМР (101 МHz, DMSO-*d*6): δ 119.3, 124.4, 126.0, 126.87, 126.96, 126.99, 127.01, 127.94, 128.05, 128.08, 128.44, 128.46, 128.64, 128.74, 129.16, 131.95, 132.27, 133.93, 140.70, 141.98, 142.72. Рассчитано для C₂₉H₂₁N₃O₂S₂ (507.63), %: C, 68.62; H, 4.17; N, 8.28; S, 12.63; найдено %: C, C, 68.81; H, 4.25; N, 8.17; S, 12.78.

4-Хлор-*N***-**(**2**,**5**-дифенилимидазо[2,1-*b*][**1**,**3**]тиазол-**3**-ил)бензолсульфонамид (L7). Белое твердое вещество. Выход 37%, 240 мг, t_{пл} 251–253 °C. ИК (КВг, v, сm–1): 1585, 1472, 1431 (C=C, C=N), 1358, 1166 (SO2). ¹H ЯМР (400 МНz, DMSO-*d6*): δ 7.20-7.58 (m, 12H), 7.80-7.91 (m, 2H), 7.99 (s, 1H). ¹³C ЯМР (101 МНz, DMSO-*d6*): δ 108.85, 118.53, 124.97, 127.04, 127.86, 128.00, 128.41, 128.58, 128.64, 128.79, 128.85, 129.11, 131.95, 138.19, 138.26, 142.83, 143.36. Рассчитано для C₂₃H₁₆N₃O₂S₂Cl (465.98), %: C, 59.28; H, 3.46; N, 9.02; S 13.76; найдено, %: C, 59.45; H, 3.37; N, 8.84; S 13.62.

4-Метил-*N***-**(**2**,**5**-дифенилимидазо[2,1-*b*][**1**,**3**]тиазол-**3**-ил)бензолсульфонамид (L8). Белое твердое вещество. Выход 40%, 250 мг, t_{пл} 231–233 °C. ИК (КВг, v, сm–1): 1597, 1493, 1470 (C=C, C=N), 1340, 1166 (SO2). ¹Н ЯМР (400 MHz, DMSO-*d*6): δ 2.25 (s, 3H), 7.07-7.14 (m, 2H), 7.24-7.36 (m, 4H), 7.38-7.48 (m, 6H), 7.74-7.82 (m, 3H), 11.11 (s, 1H). ¹³С ЯМР (101 MHz, DMSOd6): δ 20.96, 108.74, 118.71, 124.91, 126.66, 126.75, 127.81, 127.99, 128.67, 128.71, 128.86, 128.92, 129.65, 132.39, 136.57, 142.91, 143.80, 143.84. Рассчитано для C₂₄H₁₉N₃O₂S₂ (445.56), %: C, 64.07; H, 14.30; N, 9.43; S 14.39; найдено, %: C, 64.26; H, 14.15; N, 9.35; S 14.47.

N-(2,5-дифенилимидазо[2,1-*b*][1,3]тиазол-3-ил)бензолсульфонамид (L9). Белое твердое вещество. Выход 35%, 210 мг, t_{пл} 242–243 °C. ИК (КВг, v, сm–1): 1597, 1514, 1493, 1450 (C=C, C=N), 1344, 1167 (SO2). ¹Н ЯМР (400 MHz, DMSO-*d*6): δ 7.23-7.39 (m, 5H), 7.40-7.52 (m, 5H), 7.57 (m, 2H), 7.78-7.86 (m, 2H), 7.94 (s, 1H). ¹³С ЯМР (101MHz, DMSO-*d*6): δ 109.04, 118.97, 125.02, 126.64, 127.21, 128.04, 128.15, 128.74, 128.80, 128.83, 128.97, 129.15, 129.24, 133.30, 139.81, 142.71, 142.77 ppm. Рассчитано для C₂₃H₁₇N₃O₂S₂ (431.53), %: C, 64.05; H, 3.97; N, 9.74; S, 14.86; найдено, %: C, 64.24; H, 4.09; N, 9.88; S, 14.65.

4-Хлор-*N***-(2-фенилимидазо[2,1-***b***][1,3]тиазол-3-ил)бензолсульфонамид (L10).** Белое твердое вещество. Выход 37%, 200 мг, t_{пл} 243-245 °C. ИК (КВг, v, сm–1): 1488, 1467 (C=C, C=N), 1347, 1172 (SO2).¹H ЯМР (400 MHz, DMSO-*d*6): δ 7.17-7.39 (m, 9H), 7.41-7.51 (m, 2H), 7.51-7.59 (m, 1H). ¹³C ЯМР (101 MHz, DMSO-*d*6): δ 112.67, 118.92, 124.97, 127.78, 128.17, 128.43, 128.52, 129.00, 129.28, 132.74, 137.89, 138.59, 142.33. Рассчитано для C₁₇H₁₂N₃O₂S₂Cl (389.88), %: C, 52.37; H, 3.10; N, 10.78; S, 16.45; найдено, %: C, 52.46; H, 3.21; N, 10.69; S, 16.68.

4-Метил-*N***-(2-фенилимидазо[2,1-***b***][1,3]тиазол-3-ил)бензолсульфонамид (L11).** Белое твердое вещество. Выход 50%, 260 мг, t_{пл} 246–248 °C. ИК (КВг, v, cm–1): 1597, 1489, 1467 (C=C, C=N), 1335, 1165 (SO2). ¹H ЯМР (400 MHz, DMSO-*d6*): δ 2.27 (s, 3H), 7.08 (m, 2H), 7.17-7.46 (m, 9H). ¹³C ЯМР (101 MHz, DMSO-*d6*): δ 20.98, 112.66, 118.59, 125.48, 126.45, 127.90, 128.55, 128.60, 129.40, 129.53, 133.22, 136.64, 142.42, 143.58. Рассчитано для C₁₈H₁₅N₃O₂S₂ (369.46), %: C, 58.52; H, 4.09; N, 11.37; S, 17.36; найдено, %: C, 58.64; H, 4.05; N, 11.48; S, 17.46.

N-(2-фенилимидазо[2,1-*b*][1,3]тиазол-3-ил)бензолсульфонамид (L12). Желтое твердое вещество. Выход 35%, 175 мг, t_{пл} 114–117 °С. ИК (КВг, v, сm–1): 1595, 1486, 1467 (C=C, C=N), 1347, 1170 (SO2). ¹Н ЯМР (400 МН*z*, DMSO-*d6*): δ 7.21-7.42 (m, 9H), 7.46-7.52 (m, 1H) 7.54-7.59 (m, 2H). ¹³С ЯМР (101 МН*z*, DMSO-*d6*): δ 112.51, 118.66, 125.25, 126.35, 127.81, 128.62, 128.70, 129.04, 129.45, 133.01, 133.05, 139.96, 142.36. Рассчитано для С17Н13N3O2S2 (355.43), %: C, 57.45; H, 3.69; N, 11.82; S, 18.04; найдено, %: C, 57.58; H, 3.77; N, 11.93; S, 18.16.

4-Хлор-*N***-[3-(4-метилфенил)имидазо[1,2-***а***]пиридин-2-ил]бензолсульфонамид (L13).** Бледно-желтое твердое вещество. Выход 46%, 238 мг, t_{пл} 208-210°С. ИК (КВг) ν = 3037, 2781 1640, 1577, 1470, 1337, 1162, 1080, 752 cm⁻¹. ¹H ЯМР (400 MHz, DMSO-d₆) δ 2.39 (s, 3H) 6.78 -7.03 (m, 1H) 7.24 - 7.36 (m, 3H) 7.37 - 7.46 (m, 2H) 7.48 - 7.59 (m, 3H) 7.70 - 7.81 (m, 2H) 8.06 -8.36 (m, 1H) 10.29 (br. s., 1H) ppm; ¹³C ЯМР (101 MHz, DMSO-d₆) δ 20.9, 113.2, 116.4, 118.0, 123.8, 124.2, 125.4, 126.1, 128.5, 128.9, 129.0, 129.5, 135.9, 136.9, 137.8, 140.9 ppm; Рассчитано для C₂₀H₁₆N₃O₂SCl (397.87), %: С 60.37; Н 4.05; N 10.56; найдено, %: С 60.01; Н 4.08; N 10.33.

4-Хлор-*N***-**(**6-хлор-3-фенилимидазо**[**1**,**2***-а*]**пиридин-2-ил**)**бензолсульфонамид** (**L14**). Белое твердое вещество. Выход 27%, 146 мг, t_{пл} 162-164°С. ИК (КВг) v = 3033, 2842, 2774, 1570, 1451, 1337, 1162, 1082, 761 cm⁻¹. ¹H ЯМР (400 MHz, DMSO-d₆) δ 7.29 - 7.36 (m, 1H), 7.42 - 7.61 (m, 8H), 7.76 - 7.84 (m, 8H), 8.24 - 8.31 (m, 1H) ppm; ¹³C ЯМР (101 MHz, DMSO-d₆) δ 117.7, 118.9, 120.2, 121.5, 126.2, 126.6, 128.6, 128.7, 128.9, 129.0, 129.2, 136.9, 137.2, 139.7, 140.5 ppm. Рассчитано для C₁₉H₁₃Cl₂N₃O₂S (418.28), %: C 54.56; H 3.13; N 10.05; найдено, %: C 54.49; H 3.13; N 10.10.

4-Метил-*N***-**(6-метил-3-фенилимидазо[1,2-*а*]пиридин-2-ил)бензолсульфонамид (L15). Бледно-желтое твердое вещество. Выход 27%, 134 мг, t_{пл} 175-178°С. ИК (KBr) ν = 3042, 2832, 2774, 1649, 1583, 1462, 1344, 1162, 1091, 696 cm⁻¹. ¹H ЯМР (400 MHz, DMSO-d₆) δ 2.34 (s, 3H), 2.36 (s, 3H), 6.73 - 6.82 (m, 1H), 7.23 - 7.32 (m, 3H), 7.38 - 7.45 (m, 1H), 7.45 - 7.58 (m, 4H), 7.63 - 7.72 (m, 2H), 8.11 - 8.22 (m, 1H) ppm; ¹³C ЯМР (101 MHz, DMSO-d₆) δ 20.6, 20.9, 114.8, 115.5, 117.2, 123.0, 126.7, 127.6, 127.9, 128.8, 129.00, 129.1, 135.9, 136.5, 139.4, 141.4, 142.1 ppm. Рассчитано для C₂₁H₁₉N₃O₂S (377,45), %: C 66.82; H 5.07; N 11.13; найдено, %: C 66.77; H 5.04; N 11.18.

Бис-[4-хлор-*N*-(3,6-дифенилимидазо[2,1-*b*][1,3]тиазол-2-ил)бензолсульфонамид] хлорид меди (II) (С1). Красное твердое вещество, разлагается при нагревании. Выход 70%, 233 мг. ИК (КВг, v, cm-1): 1585, 1459, 1441 (С=С, С=N), 1346, 1171 (SO2) сm-1. Рассчитано для С46H32N6O4S4Cl4Cu (1066.36), %: С, 51.81; H, 3.02; N, 7.88; S, 12.03; найдено, %: С, 51.30; H, 3.61; N, 7.25; S, 12.32.

Бис-[4-хлор-*N*-(3-фенилимидазо[2,1-*b*][1,3]тиазол-2-ил)бензолсульфонамид] хлорид меди (II) (C2). Оранжевое твердое вещество, разлагается при нагревании. Выход 60%, 164 мг. ИК (KBr, v, cm-1): 1635, 1585, 1472 (C=C, C=N), 1341, 1170 (SO2) cm-1. Рассчитано для C34H24N6O4S4Cl4Cu (914,17), %: C, 44.67; H, 2.65; N, 9.20; S, 14.03; найдено, %: C, 44.90; H, 3.01; N, 9.32; S, 14.51.

[*N*-(2-фенил[1,3]тиазоло[3,2-*а*]бензимидазол-3-ил)бензолсульфонамидато-к²*N*,*O*] натрия *2(H₂O) (P1). Бесцветное твердое вещество, разлагается при нагревании. ИК (KBr, v, cm-1): 1582, 1460, 1445 (C=C, C=N), 1328, 1185 (SO2) cm-1. Рассчитано для C21H14N3O2S2Na*2(H2O) (463.49), %: C, 54.42; H, 3.04; N, 9.07; S, 13.84; найдено, %: C, 53.90; H, 3.11; N, 9.46; S, 13.30.

[4-Хлор-*N*-(2,6-дифенилимидазо[2,1-*b*][1,3]тиазол-3-ил)бензолсульфонамидато-к*N*] калия (Р2). Бесцветное твердое вещество, разлагается при нагревании. ИК (КВг, v, cm-1): 1585,

1460, 1422 (C=C, C=N), 1347, 1171 (SO2) ст-1. Рассчитано для C23H17N3O2S2ClK (506.07), %: C, 54.58; H, 3.39; N, 8.31; S, 12.67; найдено, %: C, 55.01; H, 3.55; N, 8.70; S, 12.20.

[4-Хлор-*N*-(2,6-дифенилимидазо[2,1-*b*][1,3]тиазол-3-ил)бензолсульфонамидато-к*N*] калия (РЗ). Бесцветное твердое вещесто, разлагается при нагревании. ИК (КВг, v, cm-1): 1585, 1459, 1441 (C=C, C=N), 1346, 1171 (SO2) cm-1. Рассчитано для C23H15N3O2S2ClK (504.05), %: C, 54.80; H, 3.00; N, 8.34; S, 12.72; найдено, %: C, 54.30; H, 3.11; N, 8.58; S, 12.52.

3.3. Данные экспериментов РСА

Рентгенографические эксперименты проводились на монокристальном дифрактометре Bruker D8 Venture с детектором Photon 100 с использованием сканирования $\omega - \varphi$. Основные кристаллографические характеристики и параметры экспериментов, а также длины связей и углы приведены ниже (Табл. 3.4–3.33). Интенсивность отражения была интегрирована с использованием пакета программ Bruker SAINT. Поправка на поглощение рентгеновских лучей была применена из анализа эквивалентных интенсивностей отражения. После их усреднения использовались только независимые отражения. Поиск модели осуществлялся прямыми методами с использованием программы SHELXS [136]. В результате были найдены координаты всех неводородных атомов. Положения атомов водорода были определены методом «Наездника». Полученные структуры были уточнены по методу наименьших квадратов с использованием программы SHELXL [136].

Полная информация о кристаллических структурах соединений (опубликованные структуры) была передана в Кембриджский кристаллографический центр данных, номера депозитов ССDС представлены ниже (Табл. 3.12, 3.14, 3.18, 3.20, 3.22).

Таблица 3.4. Кристаллографические данные, детали измерений и уточнения структуры для соединения L1

Empirical formula	$C_{21}H_{14}N_3O_2S_2Cl$
Formula weight / g·mol ⁻¹	439.92
Crystal system	monoclinic
Space group	P2 ₁ /c
<i>a</i> / Å	8.5334(3)
b / Å	11.9706(4)
<i>c</i> / Å	19.0862(7)

α, β, γ / °	90, 99.8850(10), 90
Volume / $Å^3$	1920.71(12)
Ζ	4
Density (calculated) / $g \cdot cm^{-3}$	1.521
Absorptions coefficient / mm ⁻¹	0.441
Radiation $(\lambda / \text{\AA})$	ΜοΚα (0.71073)
Temperature / K	100(2)
2Θ range / °	2.42 - 30.03
Crystal size / mm	$0.31\times0.26\times0.25$
Crystal habit	yellow, prism
F(000)	904
Index ranges	-12<=h<=11, -16<=k<=16, -26<=l<=26
Reflections collected	62782
Independent reflections	5603 [R(int) = 0.0356]
Number of ref. parameters	262
$R_1 / wR_2 [I > 2\sigma(I)]$	0.0297 / 0.0747
R_1 / wR_2 (all data)	0.0369 / 0.0789
Goodness-of-fit on F ²	1.068
Completeness [%]	99.7
Largest diff. peak and hole / $e \cdot Å^{-3}$	0.481/ -0.425
Weight scheme	w=1/[$\sigma^{2}(F_{o}^{2})+(0.0351P)^{2}+0.9889P$] where P=($F_{o}^{2}+2F_{c}^{2}$)/3

Таблица 3.5. Селективные длины связей, углы при связях и торсионные углы для соединения L1

Bond	l, Å	Angle	φ, °	Torsion angle	θ, °
Cl1-C15	1.7363(12)	O1-S2-O2	121.07(6)	O1-S2-N3-C2	-149.33(9)
S2-O2	1.4349(9)	O2-S2-N3	107.29(5)	C12-S2-N3-C2	96.17(10)
S2-C12	1.7620(12)	O2-S2-C12	107.89(6)	C9-C8-C7-C6	0.8(2)
S1-C1	1.7657(12)	C5-S1-C1	90.99(6)	C8-C7-C6-C1	-179.60(11)
N3-H3N	0,88	C2-N3-H3N	119,9	C7-C6-C1-C2	-36.61(19)
N2-C3	1.3936(15)	C5-N2-C3	106.76(10)	C7-C6-C1-S1	143.26(10)

N1-C5	1.3174(16)	C3-N2-C2	138.06(10)	C5-S1-C1-C6	-178.93(9)
C9-C10	1.382(2)	C10-C9-C8	119.84(13)	S1-C1-C2-N3	178.56(9)
C6-C1	1.4698(17)	C8-C7-C6	120.04(12)	S1-C1-C2-N2	0.35(13)
C12-C17	1.3920(16)	C11-C6-C1	120.47(11)	S2-N3-C2-N2	90.67(12)
C17-C16	1.3895(17)	C2-C1-C6	130.01(11)	C3-N2-C2-C1	-179.07(12)
C16-C15	1.3885(18)	C6-C1-S1	118.36(8)	C3-N2-C2-N3	2.5(2)
C15-C14	1.3861(17)	C1-C2-N2	111.97(10)	O2-S2-C12-C17	20.67(11)
C4-C18	1.3962(18)	C17-C12-C13	121.37(11)	O1-S2-C12-C13	-29.88(11)
C3-C21	1.3887(17)	C13-C12-S2	119.08(9)	N3-S2-C12-C13	83.14(10)
C13-C14	1.3912(17)	C17-C16-C15	119.04(11)	S2-C12-C17-C16	177.33(9)
S2-O1	1.4329(9)	C16-C15-Cl1	118.56(10)	C17-C16-C15-C14	-1.34(19)
S2-N3	1.6345(10)	N1-C5-N2	114.54(11)	C4-N1-C5-N2	0.12(14)
S1-C5	1.7323(13)	N2-C5-S1	110.23(9)	C3-N2-C5-N1	1.21(14)
N3-C2	1.3982(14)	C10-C11-C6	120.16(13)	C3-N2-C5-S1	-179.36(8)
N2-C5	1.3715(14)	C18-C4-C3	119.28(12)	C1-S1-C5-N1	177.25(13)
N2-C2	1.4049(14)	C21-C3-N2	132.77(11)	C8-C9-C10-C11	-0.3(2)
N1-C4	1.4024(17)	N2-C3-C4	104.08(10)	C7-C6-C11-C10	-0.04(19)
C9-C8	1.389(2)	C21-C20-C19	121.53(13)	C5-N1-C4-C18	177.78(13)
C8-C7	1.3892(18)	C19-C18-C4	117.87(12)	C5-N2-C3-C21	176.37(13)
C7-C6	1.3990(17)	C13-C14-C15	118.80(11)	C5-N2-C3-C4	-1.93(12)
C6-C11	1.3997(17)	O1-S2-N3	105.96(5)	C18-C4-C3-C21	4.31(18)
C1-C2	1.3557(16)	O1-S2-C12	108.08(6)	C18-C4-C3-N2	-177.17(11)
C12-C13	1.3947(16)	N3-S2-C12	105.55(5)	N2-C3-C21-C20	178.81(12)
C10-C11	1.389(2)	C2-N3-S2	120.20(8)	C3-C21-C20-C19	-0.05(19)
C4-C3	1.4152(16)	C5-N2-C2	115.13(10)	C20-C19-C18-C4	-1.0(2)
C21-C20	1.3891(17)	C5-N1-C4	103.38(10)	C3-C4-C18-C19	-2.07(18)
C20-C19	1.4018(19)	C7-C8-C9	120.38(13)	S2-C12-C13-C14	-177.54(9)
C19-C18	1.384(2)	C11-C6-C7	119.15(12)	C16-C15-C14-C13	1.14(19)
		C7-C6-C1	120.38(11)	O2-S2-N3-C2	-18.69(11)
		C2-C1-S1	111.62(9)	C10-C9-C8-C7	-0.4(2)
		C1-C2-N3	129.23(11)	C8-C7-C6-C11	-0.62(18)
		N3-C2-N2	118.78(10)	C11-C6-C1-C2	144.43(13)
		C17-C12-S2	119.47(9)	C11-C6-C1-S1	-35.70(15)
		C16-C17-C12	119.22(11)	C5-S1-C1-C2	0.96(9)

C16-C15-C14	122.19(11)	C6-C1-C2-N3	-1.6(2)
C14-C15-Cl1	119.25(10)	C6-C1-C2-N2	-179.78(11)
N1-C5-S1	135.22(10)	S2-N3-C2-C1	-87.44(14)
C11-C10-C9	120.43(13)	C5-N2-C2-C1	-1.98(14)
C18-C4-N1	129.53(11)	C5-N2-C2-N3	179.59(10)
N1-C4-C3	111.19(11)	O1-S2-C12-C17	153.19(10)
C21-C3-C4	123.13(11)	N3-S2-C12-C17	-93.78(10)
C20-C21-C3	116.21(11)	O2-S2-C12-C13	-162.40(9)
C18-C19-C20	121.85(12)	C13-C12-C17-C16	0.48(18)
C14-C13-C12	119.37(11)	C12-C17-C16-C15	0.51(18)
		C17-C16-C15-Cl1	178.92(9)
		C4-N1-C5-S1	-179.12(11)
		C2-N2-C5-N1	-176.76(10)
		C2-N2-C5-S1	2.67(12)
		C1-S1-C5-N2	-2.01(9)
		C9-C10-C11-C6	0.5(2)
		C1-C6-C11-C10	178.93(12)
		C5-N1-C4-C3	-1.42(13)
		C2-N2-C3-C21	-6.4(2)
		C2-N2-C3-C4	175.32(13)
		N1-C4-C3-C21	-176.39(11)
		N1-C4-C3-N2	2.12(13)
		C4-C3-C21-C20	-3.16(18)
		C21-C20-C19-C18	2.2(2)
		N1-C4-C18-C19	178.79(12)
		C17-C12-C13-C14	-0.68(18)
		C12-C13-C14-C15	-0.12(18)
		Cl1-C15-C14-C13	-179.12(9)

Таблица 3.6. Кристаллографические данные, детали измерений и уточнения структуры для соединения L2

Empirical formula	$C_{22}H_{17}N_2O_2S_2$
Example weight $/ \sim m \mathrm{cl}^{-1}$	410.51
Formula weight / g·mol	419.51
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
<i>a</i> / Å	9.0216(5)
b / Å	12.3961(6)
<i>c</i> / Å	17.8856(8)
α, β, γ / °	90, 90, 90
Volume / $Å^3$	2000.19(17)
Ζ	4
Density (calculated) / $g \cdot cm^{-3}$	1.393
Absorptions coefficient / mm ⁻¹	2.611
Radiation $(\lambda / \text{\AA})$	CuKα (1.54178)
Temperature / K	100(2)
2Θ range / °	4.34 - 77.00
Crystal size / mm	$1.10\times1.00\times0.10$
Crystal habit	colorless, prism
F(000)	872
Index ranges	-11<=h<=10, -13<=k<=14, -14<=l<=22
Reflections collected	8891
Independent reflections	3793 [R(int) = 0.0510]
Number of ref. parameters	263
$R_1 / wR_2 [I > 2\sigma(I)]$	0.0476 / 0.1234
R_1 / wR_2 (all data)	0.0544 / 0.1286
Goodness-of-fit on F ²	1.024
Completeness [%]	92.6
Largest diff. peak and hole / $e \cdot Å^{-3}$	0.285/ -0.544
Weight scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0818P) ² +0.0000P] where P=(F_o^2 +2 F_c^2)/3

Таблица 3.7. Селективные длины связей, углы при связях и торсионные углы для соединения L2

Bond	l, Å	Angle	φ, °	Torsion angle	θ, °
S2-O2	1.425(2)	O2-S2-O1	120.36(15)	O2-S2-N3-C2	170.2(2)
S2-N3	1.636(2)	O1-S2-N3	106.59(13)	C12-S2-N3-C2	-74.1(2)
S1-C5	1.738(3)	O1-S2-C12	108.80(15)	C19-C18-C4-C3	-1.3(6)
N2-C5	1.367(3)	C5-S1-C1	91.06(13)	C5-N1-C4-C3	1.0(4)
N2-C2	1.399(3)	C5-N2-C2	115.5(2)	C18-C4-C3-C21	0.2(5)
N1-C4	1.405(4)	C2-N3-S2	119.46(18)	C18-C4-C3-N2	178.5(3)
C19-C20	1.392(6)	C18-C19-C20	121.9(3)	C5-N2-C3-C21	178.7(3)
C18-C4	1.396(5)	C3-C4-C18	119.9(3)	C5-N2-C3-C4	0.7(3)
C4-C3	1.395(4)	C18-C4-N1	128.3(3)	C5-N2-C2-C1	0.7(3)
C2-C1	1.358(4)	C21-C3-N2	133.1(3)	C5-N2-C2-N3	-179.4(2)
C12-C13	1.389(4)	C1-C2-N2	112.0(2)	S2-N3-C2-C1	92.2(3)
C15-C22	1.500(5)	N2-C2-N3	118.5(2)	O2-S2-C12-C17	-146.7(3)
C1-C6	1.472(4)	C17-C12-S2	120.5(3)	N3-S2-C12-C17	100.6(3)
C6-C7	1.392(4)	C12-C17-C16	119.5(3)	O1-S2-C12-C13	171.8(2)
C20-C21	1.373(5)	C14-C15-C16	118.1(3)	C13-C12-C17-C16	2.1(5)
S2-O1	1.431(2)	C16-C15-C22	121.0(3)	C12-C17-C16-C15	-0.7(5)
S2-C12	1.758(3)	N1-C5-S1	134.2(2)	C17-C16-C15-C22	177.9(3)
S1-C1	1.760(3)	C2-C1-C6	131.5(3)	C4-N1-C5-S1	175.5(3)
N2-C3	1.400(3)	C6-C1-S1	116.9(2)	C2-N2-C5-N1	176.3(3)
N3-C2	1.402(3)	C11-C6-C1	120.0(3)	C2-N2-C5-S1	-0.7(3)
N1-C5	1.301(4)	C6-C11-C10	120.6(3)	C1-S1-C5-N2	0.4(2)
C19-C18	1.372(5)	C10-C9-C8	120.2(3)	N3-C2-C1-C6	2.7(5)
C3-C21	1.379(4)	C8-C7-C6	119.6(3)	N3-C2-C1-S1	179.7(2)
C12-C17	1.365(4)	C20-C21-C3	116.6(3)	C5-S1-C1-C6	177.5(2)
C17-C16	1.374(5)	C13-C14-C15	121.2(3)	S1-C1-C6-C11	46.0(3)
C16-C15	1.395(5)	O2-S2-N3	105.21(14)	S1-C1-C6-C7	-131.0(3)
C15-C14	1.382(5)	O2-S2-C12	109.53(14)	C1-C6-C11-C10	-176.7(3)
C6-C11	1.376(4)	N3-S2-C12	105.25(12)	C11-C10-C9-C8	0.2(5)
C11-C10	1.385(5)	C5-N2-C3	105.7(2)	C9-C8-C7-C6	0.6(5)
C10-C9	1.349(5)	C3-N2-C2	138.7(2)	C1-C6-C7-C8	176.5(3)

C9-C8	1.361(5)	C5-N1-C4	102.6(2)	C19-C20-C21-C3	0.4(5)
C8-C7	1.379(4)	C19-C18-C4	117.3(3)	N2-C3-C21-C20	-177.4(3)
C13-C14	1.375(4)	C3-C4-N1	111.8(3)	S2-C12-C13-C14	173.9(2)
		C21-C3-C4	122.8(3)	C16-C15-C14-C13	2.9(5)
		C4-C3-N2	104.2(3)	O1-S2-N3-C2	41.3(2)
		C1-C2-N3	129.4(2)	C20-C19-C18-C4	2.1(7)
		C17-C12-C13	120.8(3)	C19-C18-C4-N1	178.1(4)
		C13-C12-S2	118.4(2)	C5-N1-C4-C18	-178.5(4)
		C17-C16-C15	121.1(3)	N1-C4-C3-C21	-179.4(3)
		C14-C15-C22	120.9(4)	N1-C4-C3-N2	-1.0(3)
		N1-C5-N2	115.8(3)	C2-N2-C3-C21	3.7(6)
		N2-C5-S1	109.9(2)	C2-N2-C3-C4	-174.4(3)
		C2-C1-S1	111.5(2)	C3-N2-C2-C1	175.4(3)
		C11-C6-C7	118.5(3)	C3-N2-C2-N3	-4.6(5)
		C7-C6-C1	121.4(2)	S2-N3-C2-N2	-87.7(3)
		C9-C10-C11	120.2(3)	O1-S2-C12-C17	-13.3(3)
		C9-C8-C7	120.8(3)	O2-S2-C12-C13	38.3(3)
		C21-C20-C19	121.6(3)	N3-S2-C12-C13	-74.3(3)
		C14-C13-C12	119.1(3)	S2-C12-C17-C16	-172.7(3)
				C17-C16-C15-C14	-1.8(5)
				C4-N1-C5-N2	-0.5(4)
				C3-N2-C5-N1	-0.1(3)
				C3-N2-C5-S1	-177.08(19)
				C1-S1-C5-N1	-175.8(3)
				N2-C2-C1-C6	-177.3(3)
				N2-C2-C1-S1	-0.3(3)
				C5-S1-C1-C2	0.0(2)
				C2-C1-C6-C11	-137.1(3)
				C2-C1-C6-C7	45.9(4)
				C7-C6-C11-C10	0.3(5)
				C6-C11-C10-C9	-0.1(5)
				C10-C9-C8-C7	-0.5(5)
				C11-C6-C7-C8	-0.5(4)
				C18-C19-C20-C21	-1.6(7)

C4-C3-C21-C200.3(5)C17-C12-C13-C14-1.0(5)C12-C13-C14-C15-1.5(5)C22-C15-C14-C13-176.8(3)

Таблица 3.8. Кристаллографические данные, детали измерений и уточнения структуры для соединения L4

Empirical formula	$C_{32}H_{27}N_4O_3S_2Cl (C_{29}H_{20}N_3O_2$		
	$S_2Cl,C_3H_7NO)$		
Formula weight / g·mol ⁻¹	615.15		
Crystal system	triclinic		
Space group	P -1		
a / Å	10.3090(8)		
b / Å	11.1951(9)		
<i>c</i> / Å	12.7913(11)		
α, β, γ / °	78.505(3), 88.592(3), 86.705(3)°		
Volume / Å ³	1444.1(2)		
Ζ	2		
Density (calculated) / $g \cdot cm^{-3}$	1.415		
Absorptions coefficient / mm ⁻¹	0.319		
Radiation $(\lambda / \text{Å})$	ΜοΚα (0.71073)		
Temperature / K	100(2)		
2Θ range / $^{\circ}$	1.98 - 30.08		
Crystal size / mm	$0.50\times0.40\times0.08$		
Crystal habit	colourless, plate		
F(000)	640		
Index ranges	-14<=h<=14, -15<=k<=15, -18<=l<=18		
Reflections collected	75107		
Independent reflections	8467 [R(int) = 0.0506]		
Number of ref. parameters	381		
$R_1 / wR_2 [I > 2\sigma(I)]$	0.0358 / 0.0863		
R_1 / wR_2 (all data)	0.0488 / 0.0488		

1.045
99.8
0.410/ -0.475
$w=1/[\sigma^2(F_o^2)+(0.0416P)^2+0.7192P]$
where $P = (F_o^2 + 2F_c^2)/3$

Таблица 3.9. Селективные длины связей, углы при связях и торсионные углы для соединения L4

Bond	l, Å	Angle	φ, °	Torsion angle	θ, °
Cl1-C15	1.7431(13)	O1-S2-O2	121.67(6)	O1-S2-N3-C2	148.09(9)
S2-O2	1.4328(9)	O2-S2-N3	106.58(5)	C12-S2-N3-C2	-98.60(10)
S2-C12	1.7665(13)	O2-S2-C12	108.65(6)	Cl1-C15-C14-C13	-179.95(9)
S1-C1	1.7625(12)	C5-S1-C1	90.52(6)	C14-C13-C12-C17	0.57(18)
N3-C2	1.3949(15)	C5-N2-C3	107.00(10)	O1-S2-C12-C13	23.64(12)
N2-C5	1.3651(15)	C3-N2-C2	138.55(10)	N3-S2-C12-C13	-89.62(10)
N2-C2	1.4056(15)	C32-N4-C30	121.17(12)	O2-S2-C12-C17	-25.78(12)
N1-C4	1.4024(15)	C30-N4-C31	116.72(12)	S2-N3-C2-C1	87.19(15)
N4-C30	1.4514(18)	C14-C15-Cl1	118.08(10)	C5-N2-C2-C1	-1.42(15)
C15-C14	1.3841(17)	C13-C14-C15	118.84(12)	C5-N2-C2-N3	176.38(10)
C14-C13	1.3822(17)	C13-C12-C17	121.17(12)	C5-N2-C3-C4	0.02(12)
C13-C12	1.3905(17)	C17-C12-S2	120.73(10)	C5-N2-C3-C18	-179.67(11)
C12-C17	1.3902(17)	C1-C2-N2	112.42(10)	N2-C3-C4-N1	-0.13(13)
C3-C4	1.3820(16)	C4-C3-N2	104.35(10)	N2-C3-C4-C24	178.68(11)
C4-C24	1.4684(17)	N2-C3-C18	122.86(10)	C5-N1-C4-C3	0.18(13)
C24-C25	1.4001(17)	C3-C4-C24	128.50(11)	C3-C4-C24-C29	153.74(13)
C1-C6	1.4697(17)	C29-C24-C25	118.17(12)	C3-C4-C24-C25	-28.2(2)
C6-C7	1.4017(16)	C25-C24-C4	121.88(11)	C25-C24-C29-C28	0.6(2)
C25-C26	1.3832(18)	C27-C28-C29	119.85(13)	C24-C29-C28-C27	-0.2(2)
C18-C19	1.3934(16)	C15-C16-C17	119.08(12)	C14-C15-C16-C17	-0.10(19)
S2-O1	1.4293(10)	N1-C5-N2	113.67(11)	C15-C16-C17-C12	-0.54(18)
S2-N3	1.6281(10)	N2-C5-S1	110.89(9)	S2-C12-C17-C16	-177.26(9)
S1-C5	1.7366(13)	C2-C1-S1	111.74(9)	C4-N1-C5-S1	177.05(11)

O3-C32	1.2321(16)	C11-C6-C7	118.79(11)	C2-N2-C5-N1	178.34(10)
N2-C3	1.3906(15)	C7-C6-C1	119.82(11)	C2-N2-C5-S1	0.44(13)
N1-C5	1.3146(15)	C7-C8-C9	120.67(12)	C1-S1-C5-N2	0.44(9)
N4-C32	1.3241(18)	C9-C10-C11	120.48(12)	N2-C2-C1-C6	-175.87(11)
N4-C31	1.4533(17)	C26-C25-C24	120.54(12)	N2-C2-C1-S1	1.71(13)
C15-C16	1.3874(17)	C23-C18-C19	119.18(11)	C5-S1-C1-C6	176.55(10)
C2-C1	1.3515(17)	C19-C18-C3	120.57(11)	S1-C1-C6-C11	40.51(15)
C3-C18	1.4806(16)	C21-C20-C19	120.18(13)	S1-C1-C6-C7	-139.24(10)
C24-C29	1.3973(17)	C21-C22-C23	120.02(13)	C1-C6-C7-C8	-179.64(11)
C29-C28	1.3824(18)	O3-C32-N4	125.51(14)	C7-C8-C9-C10	0.21(19)
C28-C27	1.388(2)	O1-S2-N3	106.79(6)	C9-C10-C11-C6	0.48(19)
C27-C26	1.3891(19)	O1-S2-C12	106.86(6)	C1-C6-C11-C10	179.60(11)
C16-C17	1.3863(17)	N3-S2-C12	105.18(5)	C4-C24-C25-C26	-178.79(12)
C6-C11	1.3967(17)	C2-N3-S2	121.59(8)	C28-C27-C26-C25	0.2(2)
C7-C8	1.3827(17)	C5-N2-C2	114.41(10)	N2-C3-C18-C23	107.15(14)
C8-C9	1.3836(17)	C5-N1-C4	103.38(10)	N2-C3-C18-C19	-72.19(16)
C9-C10	1.3882(17)	C32-N4-C31	122.11(13)	C3-C18-C19-C20	179.31(12)
C10-C11	1.3821(17)	C14-C13-C12	119.69(12)	C19-C20-C21-C22	0.4(2)
C18-C23	1.3903(17)	C14-C15-C16	122.00(12)	C21-C22-C23-C18	0.2(2)
C19-C20	1.3833(17)	C16-C15-Cl1	119.91(10)	C3-C18-C23-C22	-179.34(12)
C20-C21	1.3853(19)	C13-C12-S2	118.05(10)	C31-N4-C32-O3	-176.85(14)
C21-C22	1.3788(18)	C1-C2-N3	128.73(11)	O2-S2-N3-C2	16.64(11)
C22-C23	1.3874(17)	N3-C2-N2	118.81(10)	C16-C15-C14-C13	0.97(18)
		C4-C3-C18	132.79(11)	C15-C14-C13-C12	-1.18(18)
		C3-C4-N1	111.60(11)	C14-C13-C12-S2	178.20(9)
		N1-C4-C24	119.89(10)	O2-S2-C12-C13	156.57(10)
		C29-C24-C4	119.93(11)	O1-S2-C12-C17	-158.72(10)
		C28-C29-C24	121.31(12)	N3-S2-C12-C17	88.02(11)
		C28-C27-C26	119.64(13)	S2-N3-C2-N2	-90.20(12)
		C16-C17-C12	119.21(11)	C3-N2-C2-C1	176.05(12)
		N1-C5-S1	135.40(10)	C3-N2-C2-N3	-6.1(2)
		C2-C1-C6	128.07(11)	C2-N2-C3-C4	-177.57(13)
		C6-C1-S1	120.15(9)	C2-N2-C3-C18	2.7(2)
		C11-C6-C1	121.39(11)	C18-C3-C4-N1	179.52(12)

120.19(12)	C18-C3-C4-C24	-1.7(2)
119.46(12)	C5-N1-C4-C24	-178.74(10)
120.41(11)	N1-C4-C24-C29	-27.54(17)
120.48(13)	N1-C4-C24-C25	150.55(12)
120.25(11)	C4-C24-C29-C28	178.78(12)
120.18(12)	C29-C28-C27-C26	-0.3(2)
120.06(12)	Cl1-C15-C16-C17	-179.16(9)
120.38(12)	C13-C12-C17-C16	0.31(18)
	C4-N1-C5-N2	-0.17(13)
	C3-N2-C5-N1	0.10(13)
	C3-N2-C5-S1	-177.81(8)
	C1-S1-C5-N1	-176.83(13)
	N3-C2-C1-C6	6.6(2)
	N3-C2-C1-S1	-175.81(10)
	C5-S1-C1-C2	-1.25(10)
	C2-C1-C6-C11	-142.09(13)
	C2-C1-C6-C7	38.16(19)
	C11-C6-C7-C8	0.59(18)
	C6-C7-C8-C9	-0.39(19)
	C8-C9-C10-C11	-0.26(19)
	C7-C6-C11-C10	-0.64(18)
	C29-C24-C25-C26	-0.67(19)
	C24-C25-C26-C27	0.3(2)
	C4-C3-C18-C23	-72.44(18)
	C4-C3-C18-C19	108.21(16)
	C23-C18-C19-C20	-0.03(18)
	C18-C19-C20-C21	-0.2(2)
	C20-C21-C22-C23	-0.4(2)
	C19-C18-C23-C22	0.01(19)
	C30-N4-C32-O3	3.8(2)

105

C8-C7-C6

C8-C9-C10

C10-C11-C6

C25-C26-C27

C23-C18-C3

C20-C19-C18

C22-C21-C20

C22-C23-C18

Таблица 3.10. Кристаллографические данные, детали измерений и уточнения структуры для соединения L5

Empirical formula	$C_{33}H_{30}N_4O_3S_2 (C_{30}H_{23}N_3O_2S_2,C_3H_7NO)$
Formula weight / g·mol ⁻¹	594.73
Crystal system	triclinic
Space group	P -1
<i>a</i> / Å	10.3319(19)
b / Å	11.125(2)
c / Å	12.868(2)
α, β, γ / °	79.624(5), 87.499(6), 87.377(6)
Volume / Å ³	1452.4(4)
Ζ	2
Density (calculated) / $g \cdot cm^{-3}$	1.360
Absorptions coefficient / mm ⁻¹	0.266
Radiation $(\lambda / \text{Å})$	ΜοΚα (0.71073)
Temperature / K	100(2)
2Θ range / °	2.23 - 27.00
Crystal size / mm	$0.50\times0.36\times0.22$
Crystal habit	colorless, prism
F(000)	624
Index ranges	-13<=h<=13, -14<=k<=14, -16<=l<=16
Reflections collected	38917
Independent reflections	6328 [R(int) = 0.0696]
Number of ref. parameters	382
$R_1 / wR_2 \ [I > 2\sigma(I)]$	0.0442 / 0.0922
$\mathbf{R}_1 / \mathbf{w} \mathbf{R}_2$ (all data)	0.0685 / 0.1016
Goodness-of-fit on F ²	1.034
Completeness [%]	99.7
Largest diff. peak and hole / $e \cdot Å^{-3}$	0.325/ -0.465
Weight scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0326P) ² +1.2017P] where P=(F_o^2 +2 F_c^2)/3

Таблица 3.11. Селективные длины связей, углы при связях и торсионные углы для соединения L5

Bond	l, Å	Angle	φ, °	Torsion angle	θ, °
S2-O2	1.4302(15)	O2-S2-O1	121.34(9)	O2-S2-N3-C2	-16.99(17)
S2-N3	1.6306(17)	O1-S2-N3	106.69(9)	C12-S2-N3-C2	98.92(15)
S1-C5	1.7361(19)	O1-S2-C12	106.69(9)	C27-C26-C25-C24	-0.2(4)
O3-C32	1.231(3)	C5-S1-C1	90.39(9)	C26-C25-C24-C4	179.4(2)
N2-C3	1.392(2)	C5-N2-C2	114.64(15)	C5-N1-C4-C24	179.32(17)
N3-C2	1.394(2)	C2-N3-S2	122.02(13)	C25-C24-C4-C3	25.8(3)
N1-C5	1.313(2)	C32-N4-C30	121.04(19)	C25-C24-C4-N1	-153.34(19)
N4-C32	1.329(3)	C30-N4-C31	116.77(19)	C24-C4-C3-N2	-179.29(18)
N4-C31	1.454(3)	C25-C26-C27	120.7(2)	C24-C4-C3-C18	1.0(4)
C27-C26	1.390(3)	C29-C24-C25	118.61(18)	C2-N2-C3-C4	177.5(2)
C26-C25	1.387(3)	C25-C24-C4	122.07(18)	C2-N2-C3-C18	-2.7(3)
C25-C24	1.400(3)	C3-C4-C24	128.58(18)	S2-N3-C2-N2	89.98(19)
C24-C29	1.396(3)	C4-C3-N2	104.07(16)	C3-N2-C2-C1	-176.6(2)
C4-C3	1.381(3)	N2-C3-C18	122.99(16)	C3-N2-C2-N3	5.7(3)
C2-C1	1.355(3)	C1-C2-N2	111.93(17)	O1-S2-C12-C13	-22.45(18)
C12-C17	1.391(3)	C13-C12-C17	121.14(17)	O2-S2-C12-C17	27.02(19)
C15-C33	1.511(3)	C17-C12-S2	120.53(15)	N3-S2-C12-C17	-86.86(17)
C1-C6	1.473(2)	C13-C14-C15	121.09(19)	S2-C12-C13-C14	-178.16(16)
C6-C7	1.398(3)	C14-C15-C33	119.54(19)	C13-C14-C15-C16	-0.7(3)
C18-C19	1.391(3)	N1-C5-N2	113.87(16)	C4-N1-C5-N2	0.0(2)
C19-C20	1.390(3)	N2-C5-S1	110.92(13)	C3-N2-C5-N1	-0.1(2)
C20-C21	1.381(3)	C2-C1-S1	112.11(14)	C3-N2-C5-S1	178.02(12)
C21-C22	1.378(3)	C11-C6-C7	119.25(17)	C1-S1-C5-N1	177.2(2)
C22-C23	1.386(3)	C7-C6-C1	119.79(17)	N3-C2-C1-C6	-6.4(3)
C17-C16	1.388(3)	C9-C10-C11	120.57(19)	N3-C2-C1-S1	176.49(16)
S2-O1	1.4340(16)	C9-C8-C7	120.34(19)	C5-S1-C1-C2	0.75(15)
S2-C12	1.7641(19)	C19-C18-C23	118.87(19)	C2-C1-C6-C11	141.6(2)
S1-C1	1.762(2)	C23-C18-C3	120.59(18)	C2-C1-C6-C7	-39.5(3)
N2-C5	1.367(2)	C21-C20-C19	119.9(2)	C7-C6-C11-C10	0.7(3)
N2-C2	1.406(2)	C21-C22-C23	120.3(2)	C6-C11-C10-C9	-0.6(3)

N1-C4	1.399(2)	C29-C28-C27	119.6(2)	C10-C9-C8-C7	-0.3(3)
N4-C30	1.453(3)	C16-C17-C12	118.60(18)	C11-C6-C7-C8	-0.6(3)
C27-C28	1.388(3)	O3-C32-N4	125.6(2)	C4-C3-C18-C19	71.6(3)
C24-C4	1.474(3)	O2-S2-N3	106.17(9)	C4-C3-C18-C23	-108.1(2)
C3-C18	1.479(3)	O2-S2-C12	109.14(9)	C23-C18-C19-C20	-0.3(3)
C12-C13	1.389(3)	N3-S2-C12	105.83(9)	C18-C19-C20-C21	0.1(3)
C13-C14	1.383(3)	C5-N2-C3	106.89(15)	C20-C21-C22-C23	-0.2(3)
C14-C15	1.391(3)	C3-N2-C2	138.43(17)	C19-C18-C23-C22	0.3(3)
C15-C16	1.392(3)	C5-N1-C4	103.08(16)	C26-C27-C28-C29	0.9(4)
C6-C11	1.397(3)	C32-N4-C31	122.1(2)	C25-C24-C29-C28	-1.1(3)
C11-C10	1.387(3)	C28-C27-C26	119.7(2)	C13-C12-C17-C16	-0.8(3)
C10-C9	1.384(3)	C26-C25-C24	120.1(2)	C12-C17-C16-C15	1.2(3)
C9-C8	1.385(3)	C29-C24-C4	119.29(18)	C33-C15-C16-C17	178.82(19)
C8-C7	1.387(3)	C3-C4-N1	112.09(16)	C31-N4-C32-O3	178.5(2)
C18-C23	1.394(3)	N1-C4-C24	119.33(17)	O1-S2-N3-C2	-147.70(14)
C28-C29	1.386(3)	C4-C3-C18	132.94(16)	C28-C27-C26-C25	-0.8(4)
		C1-C2-N3	128.80(17)	C26-C25-C24-C29	1.2(3)
		N3-C2-N2	119.22(16)	C5-N1-C4-C3	0.1(2)
		C13-C12-S2	118.29(15)	C29-C24-C4-C3	-156.0(2)
		C14-C13-C12	119.14(18)	C29-C24-C4-N1	24.9(3)
		C14-C15-C16	118.68(18)	N1-C4-C3-N2	-0.1(2)
		C16-C15-C33	121.79(18)	N1-C4-C3-C18	-179.80(19)
		N1-C5-S1	135.17(15)	C5-N2-C3-C4	0.1(2)
		C2-C1-C6	127.99(18)	C5-N2-C3-C18	179.85(17)
		C6-C1-S1	119.83(14)	S2-N3-C2-C1	-87.3(2)
		C11-C6-C1	120.94(17)	C5-N2-C2-C1	0.7(2)
		C10-C11-C6	119.97(18)	C5-N2-C2-N3	-177.03(16)
		C10-C9-C8	119.76(18)	O2-S2-C12-C13	-155.20(15)
		C8-C7-C6	120.10(18)	N3-S2-C12-C13	90.92(17)
		C19-C18-C3	120.53(18)	O1-S2-C12-C17	159.77(16)
		C20-C19-C18	120.5(2)	C17-C12-C13-C14	-0.4(3)
		C22-C21-C20	120.1(2)	C12-C13-C14-C15	1.1(3)
		C22-C23-C18	120.3(2)	C13-C14-C15-C33	179.97(19)
		C28-C29-C24	121.3(2)	C4-N1-C5-S1	-177.47(17)
C17-C16-C15	121.33(19)	C2-N2-C5-N1	-178.21(16)		
-------------	------------	-----------------	-------------		
		C2-N2-C5-S1	-0.1(2)		
		C1-S1-C5-N2	-0.36(14)		
		N2-C2-C1-C6	176.15(18)		
		N2-C2-C1-S1	-0.9(2)		
		C5-S1-C1-C6	-176.60(16)		
		S1-C1-C6-C11	-41.5(2)		
		S1-C1-C6-C7	137.42(17)		
		C1-C6-C11-C10	179.55(19)		
		C11-C10-C9-C8	0.4(3)		
		C9-C8-C7-C6	0.4(3)		
		C1-C6-C7-C8	-179.46(18)		
		N2-C3-C18-C19	-108.0(2)		
		N2-C3-C18-C23	72.3(2)		
		C3-C18-C19-C20	179.93(18)		
		C19-C20-C21-C22	0.2(3)		
		C21-C22-C23-C18	0.0(3)		
		C3-C18-C23-C22	179.99(17)		
		C27-C28-C29-C24	0.1(4)		
		C4-C24-C29-C28	-179.4(2)		
		S2-C12-C17-C16	176.96(15)		
		C14-C15-C16-C17	-0.5(3)		
		C30-N4-C32-O3	-4.1(4)		

Таблица 3.12. Кристаллографические данные, детали измерений и уточнения структуры для соединения L6

CCDC number	1564758
Empirical formula	
	$C_{29}H_{21}N_{3}O_{2}S_{2}$
Formula weight / g·mol ⁻¹	507.61
Crystal system	monoclinic
Space group	P2 ₁ /c
<i>a</i> / Å	11.2769(4)

b / Å	15.6554(6)
<i>c</i> / Å	13.8613(6)
α, β, γ / °	90, 105.831(2), 90
Volume / $Å^3$	2046.4(4)
Ζ	4
Density (calculated) / $g \cdot cm^{-3}$	1.432
Absorptions coefficient / mm ⁻¹	0.261
Radiation $(\lambda / \text{Å})$	ΜοΚα (0.71073)
Temperature / K	100(2)
2Θ range / °	2.01 - 28.00
Crystal size / mm	$0.22\times0.03\times0.03$
Crystal habit	yellow, needl
F(000)	1056
Index ranges	-14<=h<=14, -20<=k<=20, -18<=l<=18
Reflections collected	107937
Independent reflections	5684 [R(int) = 0.1627]
Number of ref. parameters	325
$R_1 / wR_2 [I > 2\sigma(I)]$	0.0473 / 0.0898
R_1 / wR_2 (all data)	0.0850 / 0.1040
Goodness-of-fit on F ²	1.027
Completeness [%]	100.0
Largest diff. peak and hole / $e \cdot Å^{-3}$	0.434/ -0.498
Weight scheme	w=1/[$\sigma^{2}(F_{o}^{2})+(0.0293P)^{2}+3.2636P$] where P=($F_{o}^{2}+2F_{c}^{2}$)/3

Таблица 3.13. Селективные длины связей, углы при связях и торсионные углы для соединения L6

Bond	l, Å	Angle	φ, °	Torsion angle	θ, °
S2-O1	1.4293(16)	01-\$2-02	121.47(10)	O1-S2-N3-C2	-48.50(18)
S2-N3	1.6498(18)	O2-S2-N3	104.52(9)	C12-S2-N3-C2	65.92(18)
S1-C5	1.737(2)	O2-S2-C12	108.79(10)	C15-C14-C13-C12	0.3(4)
N3-C2	1.406(3)	C5-S1-C1	90.10(10)	C14-C13-C12-S2	-179.72(19)

N2-C5	1.365(3)	C5-N2-C3	106.92(18)	O2-S2-C12-C17	144.81(19)
N2-C2	1.409(3)	C3-N2-C2	139.31(19)	O1-S2-C12-C13	-167.98(18)
N1-C4	1.406(3)	C16-C15-C14	120.4(2)	N3-S2-C12-C13	77.3(2)
C15-C14	1.384(3)	C14-C13-C12	118.8(2)	S2-N3-C2-N2	87.5(2)
C14-C13	1.386(3)	C17-C12-S2	119.47(18)	C3-N2-C2-C1	-175.9(2)
C13-C12	1.390(3)	C1-C2-N3	127.9(2)	C3-N2-C2-N3	8.8(4)
C12-C17	1.387(3)	N3-C2-N2	119.52(19)	C2-N2-C3-C4	-179.1(2)
C3-C4	1.385(3)	C4-C3-C18	130.4(2)	C2-N2-C3-C18	7.6(4)
C4-C24	1.475(3)	C3-C4-N1	111.07(19)	C18-C3-C4-N1	172.6(2)
C24-C25	1.401(3)	N1-C4-C24	119.60(19)	C18-C3-C4-C24	-7.3(4)
C6-C11	1.392(3)	C29-C24-C4	119.7(2)	C5-N1-C4-C24	179.38(19)
C7-C8	1.385(3)	C26-C25-C24	121.0(2)	N1-C4-C24-C29	4.8(3)
C8-C9	1.385(3)	C26-C27-C28	118.9(2)	N1-C4-C24-C25	-175.5(2)
C9-C10	1.389(3)	N1-C5-S1	134.79(17)	C4-C24-C25-C26	179.6(2)
C10-C11	1.388(3)	C2-C1-C6	127.9(2)	C25-C26-C27-C28	0.6(4)
C18-C19	1.394(3)	C6-C1-S1	119.87(16)	C4-N1-C5-S1	-174.85(19)
C19-C20	1.388(3)	C11-C6-C1	122.19(19)	C2-N2-C5-N1	178.68(18)
C20-C21	1.377(3)	C8-C7-C6	120.5(2)	C2-N2-C5-S1	-4.4(2)
C21-C22	1.387(3)	C8-C9-C10	119.8(2)	C1-S1-C5-N2	2.77(17)
C22-C23	1.385(3)	C10-C11-C6	119.9(2)	N2-C2-C1-C6	174.6(2)
S2-O2	1.4305(16)	C28-C29-C24	121.2(2)	N2-C2-C1-S1	-1.9(2)
S2-C12	1.767(2)	C19-C18-C3	122.0(2)	C5-S1-C1-C6	-177.26(18)
S1-C1	1.761(2)	C20-C19-C18	120.2(2)	S1-C1-C6-C11	-50.6(3)
N2-C3	1.393(3)	C20-C21-C22	119.9(2)	S1-C1-C6-C7	129.25(19)
N1-C5	1.310(3)	C22-C23-C18	120.6(2)	C1-C6-C7-C8	178.8(2)
C15-C16	1.383(4)	C15-C16-C17	120.3(2)	C7-C8-C9-C10	0.4(4)
C2-C1	1.351(3)	O1-S2-N3	107.29(10)	C9-C10-C11-C6	-0.6(4)
C3-C18	1.482(3)	O1-S2-C12	106.79(10)	C1-C6-C11-C10	-178.8(2)
C24-C29	1.396(3)	N3-S2-C12	107.23(10)	C27-C28-C29-C24	2.3(4)
C25-C26	1.386(3)	C2-N3-S2	118.23(14)	C4-C24-C29-C28	178.8(2)
C26-C27	1.382(3)	C5-N2-C2	113.77(18)	N2-C3-C18-C19	-98.1(3)
C27-C28	1.389(3)	C5-N1-C4	103.81(17)	N2-C3-C18-C23	88.9(3)
C1-C6	1.475(3)	C15-C14-C13	120.2(2)	C3-C18-C19-C20	-171.6(2)
C6-C7	1.400(3)	C17-C12-C13	121.6(2)	C19-C20-C21-C22	-0.4(4)

C28-C29	1.388(3)	C13-C12-S2	118.90(17)	C21-C22-C23-C18	-0.6(3)
C18-C23	1.398(3)	C1-C2-N2	112.42(19)	C3-C18-C23-C22	172.5(2)
C17-C16	1.391(3)	C4-C3-N2	104.52(18)	S2-C12-C17-C16	179.49(18)
		N2-C3-C18	124.72(19)	C12-C17-C16-C15	0.2(4)
		C3-C4-C24	129.3(2)	O2-S2-N3-C2	-178.70(16)
		C29-C24-C25	117.6(2)	C16-C15-C14-C13	-0.6(4)
		C25-C24-C4	122.7(2)	C14-C13-C12-C17	0.2(4)
		C27-C26-C25	120.8(2)	O1-S2-C12-C17	12.1(2)
		N1-C5-N2	113.66(19)	N3-S2-C12-C17	-102.7(2)
		N2-C5-S1	111.45(16)	O2-S2-C12-C13	-35.2(2)
		C2-C1-S1	112.10(16)	S2-N3-C2-C1	-86.9(3)
		C11-C6-C7	119.2(2)	C5-N2-C2-C1	4.1(3)
		C7-C6-C1	118.6(2)	C5-N2-C2-N3	-171.12(19)
		C7-C8-C9	120.0(2)	C5-N2-C3-C4	0.9(2)
		C11-C10-C9	120.6(2)	C5-N2-C3-C18	-172.5(2)
		C29-C28-C27	120.4(2)	N2-C3-C4-N1	-0.2(2)
		C19-C18-C23	118.8(2)	N2-C3-C4-C24	179.9(2)
		C23-C18-C3	118.9(2)	C5-N1-C4-C3	-0.5(2)
		C21-C20-C19	120.6(2)	C3-C4-C24-C29	-175.3(2)
		C23-C22-C21	119.9(2)	C3-C4-C24-C25	4.4(4)
		C12-C17-C16	118.6(2)	C29-C24-C25-C26	-0.7(3)
				C24-C25-C26-C27	0.9(4)
				C4-N1-C5-N2	1.1(2)
				C3-N2-C5-N1	-1.3(3)
				C3-N2-C5-S1	175.62(14)
				C1-S1-C5-N1	178.8(2)
				N3-C2-C1-C6	-10.7(4)
				N3-C2-C1-S1	172.86(18)
				C5-S1-C1-C2	-0.48(18)
				C2-C1-C6-C11	133.2(2)
				C2-C1-C6-C7	-47.0(3)
				C11-C6-C7-C8	-1.3(3)
				C6-C7-C8-C9	0.5(3)
				C8-C9-C10-C11	-0.3(4)

C7-C6-C11-C10	1.4(3)
C26-C27-C28-C29	-2.2(4)
C25-C24-C29-C28	-0.8(3)
C4-C3-C18-C19	90.3(3)
C4-C3-C18-C23	-82.6(3)
C23-C18-C19-C20	1.4(3)
C18-C19-C20-C21	-0.9(4)
C20-C21-C22-C23	1.1(4)
C19-C18-C23-C22	-0.7(3)
C13-C12-C17-C16	-0.5(4)
C14-C15-C16-C17	0.4(4)

Таблица 3.14. Кристаллографические данные, детали измерений и уточнения структуры для соединения L10

CCDC number	1564759
Empirical formula	$C_{17}H_{12}N_3O_2S_2Cl$
Formula weight / g·mol ⁻¹	389.87
Crystal system	monoclinic
Space group	P 21/n
<i>a</i> / Å	7.4393(3)
b / Å	11.9777(4)
<i>c</i> / Å	19.0799(7)
α, β, γ / °	90, 99.957(2), 90
Volume / Å ³	1674.52(11)
Ζ	4
Density (calculated) / $g \cdot cm^{-3}$	1.546
Absorptions coefficient / mm ⁻¹	0.494
Radiation $(\lambda / \text{\AA})$	ΜοΚα (0.71073)
Temperature / K	100(2)
2Θ range / °	2.02 - 28.00
Crystal size / mm	$0.50 \times 0.23 \times 0.02$
Crystal habit	colorless, plate

F(000)	800
Index ranges	-9<=h<=9, -15<=k<=15, -23<=l<=25
Reflections collected	32992
Independent reflections	4043 [R(int) = 0.1109]
Number of ref. parameters	226
$R_1 / wR_2 \ [I > 2\sigma(I)]$	0.0495 / 0.0875
R_1 / wR_2 (all data)	0.0953 / 0.1004
Goodness-of-fit on F ²	1.047
Completeness [%]	100
Largest diff. peak and hole / $e \cdot Å^{-3}$	0.423/-0.451
Weight scheme	w=1/[$\sigma^{2}(F_{o}^{2})+(0.0330P)^{2}+1.4264P$] where P=($F_{o}^{2}+2F_{c}^{2}$)/3

Таблица 3.15. Селективные длины связей, углы при связях и торсионные углы для соединения L10

Bond	l, Å	Angle	φ, °	Torsion angle	θ, °
Cl1-C15	1.741(3)	O2-S2-O1	120.68(11)	O2-S2-N3-C2	-25.7(2)
S2-O1	1.4321(17)	O1-S2-N3	105.73(11)	C12-S2-N3-C2	90.7(2)
S2-C12	1.763(3)	O1-S2-C12	107.49(11)	Cl1-C15-C14-C13	-174.8(2)
S1-C1	1.767(2)	C5-S1-C1	90.17(11)	C14-C13-C12-C17	-1.0(4)
N2-C3	1.385(3)	C5-N2-C3	107.0(2)	O2-S2-C12-C13	19.7(2)
N1-C5	1.319(3)	C3-N2-C2	138.1(2)	N3-S2-C12-C13	-95.4(2)
C15-C14	1.381(4)	C14-C15-C16	121.9(2)	O1-S2-C12-C17	-34.0(2)
C14-C13	1.391(4)	C16-C15-Cl1	119.1(2)	C5-N2-C2-C1	1.8(3)
C13-C12	1.387(3)	C12-C13-C14	119.2(2)	C5-N2-C2-N3	-179.7(2)
C12-C17	1.395(3)	C13-C12-S2	121.03(19)	S2-N3-C2-C1	-85.3(3)
C1-C6	1.474(3)	C1-C2-N2	112.0(2)	N2-C2-C1-C6	174.4(2)
C6-C11	1.398(3)	N2-C2-N3	116.8(2)	N2-C2-C1-S1	-1.6(3)
C10-C11	1.384(3)	C2-C1-S1	111.83(18)	C5-S1-C1-C2	0.9(2)
S2-O2	1.4319(18)	C7-C6-C11	119.3(2)	C2-C1-C6-C7	148.3(3)
S2-N3	1.633(2)	C11-C6-C1	119.7(2)	C2-C1-C6-C11	-33.5(4)
S1-C5	1.728(3)	C9-C8-C7	120.7(2)	C11-C6-C7-C8	0.9(4)

C4-C3-N2	104.7(2)	C6-C7-C8-C9	1.2(4)
N1-C5-N2	112.5(2)	C5-N2-C3-C4	0.7(3)
N2-C5-S1	111.22(18)	N2-C3-C4-N1	-0.5(3)
C10-C11-C6	120.2(2)	C4-N1-C5-N2	0.3(3)
C17-C16-C15	118.9(2)	C3-N2-C5-N1	-0.7(3)
O2-S2-N3	107.52(10)	C3-N2-C5-S1	176.60(17)
O2-S2-C12	109.49(11)	C1-S1-C5-N1	176.5(3)
N3-S2-C12	104.79(11)	C8-C9-C10-C11	0.7(4)
C2-N3-S2	121.98(16)	C7-C6-C11-C10	-2.2(4)
C5-N2-C2	114.8(2)	C13-C12-C17-C16	1.9(4)
C5-N1-C4	103.9(2)	C12-C17-C16-C15	-0.4(4)
C14-C15-Cl1	118.9(2)	Cl1-C15-C16-C17	175.7(2)
C15-C14-C13	119.2(2)	O1-S2-N3-C2	-155.86(18)
C13-C12-C17	121.0(2)	C16-C15-C14-C13	2.9(4)
C17-C12-S2	117.62(19)	C15-C14-C13-C12	-1.4(4)
C1-C2-N3	131.2(2)	C14-C13-C12-S2	172.3(2)
C2-C1-C6	129.9(2)	O1-S2-C12-C13	152.5(2)
C6-C1-S1	118.16(17)	O2-S2-C12-C17	-166.74(19)
C7-C6-C1	120.9(2)	N3-S2-C12-C17	78.2(2)
C8-C7-C6	119.8(2)	C3-N2-C2-C1	-174.9(3)
C8-C9-C10	119.7(3)	C3-N2-C2-N3	3.5(4)
C3-C4-N1	111.9(2)	S2-N3-C2-N2	96.6(2)
N1-C5-S1	136.25(19)	N3-C2-C1-C6	-3.8(5)
C11-C10-C9	120.2(3)	N3-C2-C1-S1	-179.8(2)
		C5-S1-C1-C6	-175.7(2)
		S1-C1-C6-C7	-35.8(3)
		S1-C1-C6-C11	142.3(2)
		C1-C6-C7-C8	179.0(2)
		C7-C8-C9-C10	-2.0(4)
		C2-N2-C3-C4	177.6(3)
		C5-N1-C4-C3	0.1(3)
		C4-N1-C5-S1	-176.0(2)
		C2-N2-C5-N1	-178.4(2)
		C2-N2-C5-S1	-1.1(3)

N3-C2

N2-C5

N2-C2

N1-C4

C2-C1

C6-C7

C7-C8

C8-C9

C9-C10

C3-C4

C17-C16

C15-C16

1.400(3)

1.358(3)

1.400(3)

1.383(3)

1.385(4)

1.351(3)

1.392(3)

1.387(4)

1.381(4)

1.385(4)

1.355(3)

1.381(3)

C1-S1-C5-N2	0.15(19)
C9-C10-C11-C6	1.4(4)
C1-C6-C11-C10	179.7(2)
S2-C12-C17-C16	-171.63(19)
C14-C15-C16-C17	-2.0(4)

Таблица 3.16. Кристаллографические данные, детали измерений и уточнения структуры для соединения L11

Empirical formula	$C_{18}H_{15}N_3O_2S_2$
Formula weight / g·mol ⁻¹	369.45
Crystal system	monoclinic
Space group	P 21/n
a / Å	7.6694(5)
b / Å	11.8485(8)
<i>c</i> / Å	19.0027(12)
α, β, γ / °	90, 101.267(2), 90
Volume / Å ³	1693.51(19)
Ζ	4
Density (calculated) / $g \cdot cm^{-3}$	1.449
Absorptions coefficient / mm ⁻¹	0.332
Radiation $(\lambda / \text{Å})$	ΜοΚα (0.71073)
Temperature / K	100(2)
2Θ range / °	2.04 - 30.12
Crystal size / mm	$0.50\times0.15\times0.03$
Crystal habit	Colorless, plate
F(000)	768
Index ranges	-10<=h<=10, -16<=k<=16, -26<=l<=26
Reflections collected	85608
Independent reflections	4971 [R(int) = 0.1377]
Number of ref. parameters	227
$R_1 / wR_2 [I > 2\sigma(I)]$	0.0488 / 0.0993
R_1 / wR_2 (all data)	0.0893 / 0.1134

Goodness-of-fit on F ²	1.014
Completeness [%]	99.7
Largest diff. peak and hole / $e \cdot Å^{-3}$	0.410/ 0.588
W. bld all and	$w=1/[\sigma^2(F_o^2)+(0.0487P)^2+1.2528P]$
weight scheme	where $P=(F_o^2+2F_c^2)/3$

Таблица 3.17. Селективные длины связей, углы при связях и торсионные углы для соединения L11

Bond	l, Å	Angle	φ, °	Torsion angle	θ, °
S2-O2	1.4326(14)	O2-S2-O1	120.27(9)	O2-S2-N3-C2	-157.80(14)
S2-N3	1.6383(16)	O1-S2-N3	107.22(8)	C12-S2-N3-C2	88.39(15)
S1-C5	1.728(2)	O1-S2-C12	109.70(9)	C18-C15-C14-C13	176.0(2)
N3-C2	1.397(2)	C5-S1-C1	90.32(9)	C14-C13-C12-C17	1.6(3)
N2-C5	1.359(2)	C5-N2-C3	107.21(16)	O2-S2-C12-C17	153.62(16)
N2-C2	1.403(2)	C3-N2-C2	137.94(16)	N3-S2-C12-C17	-94.18(17)
N1-C4	1.382(3)	C16-C15-C14	118.63(18)	O1-S2-C12-C13	-164.47(15)
C15-C14	1.394(3)	C14-C15-C18	120.2(2)	S2-N3-C2-C1	-83.2(2)
C2-C1	1.357(3)	C14-C13-C12	119.23(19)	C5-N2-C2-C1	1.6(2)
C6-C7	1.397(3)	C17-C12-S2	120.83(15)	C5-N2-C2-N3	-179.66(16)
C11-C10	1.385(3)	C1-C2-N3	131.13(17)	N3-C2-C1-C6	-5.8(4)
C10-C9	1.381(3)	N3-C2-N2	116.98(15)	N3-C2-C1-S1	179.35(16)
C9-C8	1.386(3)	C2-C1-S1	111.76(14)	C5-S1-C1-C2	1.71(16)
C8-C7	1.386(3)	C7-C6-C11	118.87(18)	C2-C1-C6-C7	-30.9(3)
C17-C16	1.396(3)	C11-C6-C1	121.10(18)	C2-C1-C6-C11	151.8(2)
S2-O1	1.4331(15)	C9-C10-C11	120.8(2)	C7-C6-C11-C10	0.9(3)
S2-C12	1.7627(19)	N1-C5-N2	112.24(17)	C6-C11-C10-C9	1.0(3)
S1-C1	1.7653(19)	N2-C5-S1	111.26(14)	C4-N1-C5-N2	0.6(2)
N2-C3	1.382(2)	C8-C7-C6	120.42(19)	C3-N2-C5-N1	-0.5(2)
N1-C5	1.323(3)	C4-C3-N2	104.78(17)	C3-N2-C5-S1	176.66(13)
C18-C15	1.515(3)	C15-C16-C17	121.38(19)	C1-S1-C5-N1	175.4(2)
C15-C16	1.388(3)	O2-S2-N3	105.36(8)	C10-C9-C8-C7	0.4(3)
C14-C13	1.383(3)	O2-S2-C12	107.66(9)	C11-C6-C7-C8	-2.1(3)

C13-C12	1.393(3)	N3-S2-C12	105.65(8)	C5-N1-C4-C3	-0.5(2)
C12-C17	1.384(3)	C2-N3-S2	121.91(13)	C5-N2-C3-C4	0.2(2)
C1-C6	1.472(3)	C5-N2-C2	114.75(15)	C13-C12-C17-C16	-1.2(3)
C6-C11	1.397(3)	C5-N1-C4	103.89(16)	C14-C15-C16-C17	2.2(3)
C4-C3	1.358(3)	C16-C15-C18	121.1(2)	C12-C17-C16-C15	-0.7(3)
		C13-C14-C15	121.01(19)	O1-S2-N3-C2	-28.57(16)
		C17-C12-C13	121.12(18)	C16-C15-C14-C13	-1.8(3)
		C13-C12-S2	117.81(15)	C15-C14-C13-C12	-0.1(3)
		C1-C2-N2	111.87(16)	C14-C13-C12-S2	-172.86(15)
		C2-C1-C6	129.59(18)	O1-S2-C12-C17	21.09(19)
		C6-C1-S1	118.45(14)	O2-S2-C12-C13	-31.95(18)
		C7-C6-C1	119.97(17)	N3-S2-C12-C13	80.26(16)
		C10-C11-C6	120.1(2)	S2-N3-C2-N2	98.41(18)
		C10-C9-C8	119.6(2)	C3-N2-C2-C1	-174.0(2)
		N1-C5-S1	136.42(15)	C3-N2-C2-N3	4.7(3)
		C9-C8-C7	120.2(2)	N2-C2-C1-C6	172.66(18)
		C3-C4-N1	111.88(18)	N2-C2-C1-S1	-2.2(2)
		C12-C17-C16	118.58(19)	C5-S1-C1-C6	-173.75(15)
				S1-C1-C6-C7	143.58(16)
				S1-C1-C6-C11	-33.7(2)
				C1-C6-C11-C10	178.12(19)
				C11-C10-C9-C8	-1.7(3)
				C4-N1-C5-S1	-175.60(19)
				C2-N2-C5-N1	-177.47(16)
				C2-N2-C5-S1	-0.3(2)
				C1-S1-C5-N2	-0.79(15)
				C9-C8-C7-C6	1.4(3)
				C1-C6-C7-C8	-179.36(18)
				N1-C4-C3-N2	0.1(2)
				C2-N2-C3-C4	176.1(2)
				S2-C12-C17-C16	173.09(15)
				C18-C15-C16-C17	-175.6(2)

Таблица 3.18. Кристаллографические данные, детали измерений и уточнения структуры для соединения L13

CCDC number	1936999
Empirical formula	$C_{20}H_{16}N_3O_2SCl$
Formula weight / g·mol ⁻¹	397.87
Crystal system	triclinic
Space group	P -1
<i>a</i> / Å	8.0201(4)
b / Å	10.2684(5)
<i>c</i> / Å	12.2396(6)
α, β, γ / °	104.959(2), 96.459(2), 103.256(2)
Volume / Å ³	931.94(8)
Ζ	2
Density (calculated) / $g \cdot cm^{-3}$	1.418
Absorptions coefficient / mm ⁻¹	0.338
Radiation $(\lambda / \text{Å})$	ΜοΚα (0.71073)
Temperature / K	296(2)
2Θ range / °	2.33 - 30.08
Crystal size / mm	$0.27 \times 0.17 \times 0.02$
Crystal habit	yellow, prism
F(000)	412
Index ranges	-14<=h<=14, -15<=k<=15, -18<=l<=18
Reflections collected	43180
Independent reflections	5471 [R(int) = 0.0584]
Number of ref. parameters	245
$R_1 / wR_2 [I > 2\sigma(I)]$	0.0505 / 0.1284
R_1 / wR_2 (all data)	0.1066 / 0.1556
Goodness-of-fit on F ²	1.021
Completeness [%]	99.7
Largest diff. peak and hole / $e \cdot Å^{-3}$	0.367/ -0.471
Weight scheme	w=1/[$\sigma^{2}(F_{o}^{2})+(0.0680P)^{2}+0.3431P$] where P=($F_{o}^{2}+2F_{c}^{2}$)/3

Таблица 3.19. Селективные длины связей, углы при связях и торсионные углы для соединения L13

Bond	l, Å	Angle	φ, °	Torsion angle	θ, °
Cl1-C17	1.741(3)	01-S1-O2	120.34(11)	O1-S1-N3-C1	157.59(17)
S1-O2	1.4324(17)	O2-S1-N3	107.35(9)	C14-S1-N3-C1	-88.02(18)
S1-C14	1.770(2)	O2-S1-C14	107.42(11)	C20-C11-C10-C9	-178.7(2)
N1-C1	1.369(3)	C1-N3-S1	123.23(14)	C10-C9-C8-C13	-0.8(4)
N2-C7	1.384(3)	C3-N2-C7	121.6(2)	C3-N2-C2-C1	-180.0(2)
C20-C11	1.506(3)	C7-N2-C2	107.76(17)	C3-N2-C2-C8	4.9(3)
C11-C12	1.370(4)	C12-C11-C20	121.1(2)	C9-C8-C2-C1	54.3(3)
C10-C9	1.382(3)	C11-C10-C9	121.6(2)	C9-C8-C2-N2	-132.2(2)
C9-C8	1.383(3)	C9-C8-C13	117.9(2)	N2-C2-C1-N1	-0.1(2)
C8-C13	1.389(3)	C13-C8-C2	120.4(2)	N2-C2-C1-N3	-173.89(19)
C2-C1	1.371(3)	C1-C2-C8	132.78(19)	C7-N1-C1-C2	0.0(2)
C14-C19	1.384(3)	C2-C1-N1	113.00(18)	S1-N3-C1-C2	-97.1(2)
C7-C6	1.413(3)	N1-C1-N3	121.18(18)	O1-S1-C14-C15	-0.7(2)
C12-C13	1.373(4)	C15-C14-S1	119.93(19)	N3-S1-C14-C15	-114.8(2)
S1-O1	1.4297(17)	C16-C15-C14	119.3(2)	O2-S1-C14-C19	-48.6(2)
S1-N3	1.6240(18)	C18-C17-C16	121.5(2)	C19-C14-C15-C16	0.2(4)
N3-C1	1.414(2)	C16-C17-Cl1	120.0(2)	C14-C15-C16-C17	1.1(4)
N1-C7	1.332(3)	N1-C7-C6	130.1(2)	C15-C16-C17-Cl1	179.7(2)
N2-C3	1.386(3)	C4-C3-N2	118.5(3)	C1-N1-C7-C6	-177.9(2)
N2-C2	1.391(3)	C6-C5-C4	120.7(2)	C2-N2-C7-N1	-0.1(2)
C11-C10	1.385(4)	C11-C12-C13	121.8(2)	C2-N2-C7-C6	178.1(2)
C8-C2	1.468(3)	C18-C19-C14	120.6(2)	C2-N2-C3-C4	-178.3(2)
C14-C15	1.389(3)	O1-S1-N3	106.34(10)	C3-C4-C5-C6	-1.1(4)
C15-C16	1.377(4)	O1-S1-C14	106.82(11)	N1-C7-C6-C5	178.4(2)
C16-C17	1.377(4)	N3-S1-C14	108.07(10)	C10-C11-C12-C13	-1.7(4)
C17-C18	1.374(3)	C7-N1-C1	104.66(18)	C11-C12-C13-C8	0.2(4)
C3-C4	1.349(4)	C3-N2-C2	130.7(2)	C2-C8-C13-C12	179.0(2)
C4-C5	1.405(4)	C12-C11-C10	117.5(2)	S1-C14-C19-C18	176.95(19)
C5-C6	1.354(4)	C10-C11-C20	121.5(3)	Cl1-C17-C18-C19	179.17(19)
C19-C18	1.372(3)	C8-C9-C10	120.4(2)	O2-S1-N3-C1	27.56(19)

C9-C8-C2	121.6(2)	C12-C11-C10-C9	2.0(4)
C1-C2-N2	103.70(18)	C11-C10-C9-C8	-0.8(4)
N2-C2-C8	123.29(18)	C10-C9-C8-C2	-178.7(2)
C2-C1-N3	125.53(19)	C7-N2-C2-C1	0.1(2)
C15-C14-C19	120.0(2)	C7-N2-C2-C8	-175.00(19)
C19-C14-S1	120.08(17)	C13-C8-C2-C1	-123.6(3)
C17-C16-C15	119.7(2)	C13-C8-C2-N2	49.9(3)
C18-C17-Cl1	118.6(2)	C8-C2-C1-N1	174.4(2)
N1-C7-N2	110.87(18)	C8-C2-C1-N3	0.5(4)
N2-C7-C6	119.0(2)	C7-N1-C1-N3	174.11(19)
C3-C4-C5	121.2(2)	S1-N3-C1-N1	89.6(2)
C5-C6-C7	118.9(3)	O2-S1-C14-C15	129.6(2)
C12-C13-C8	120.9(2)	O1-S1-C14-C19	-179.04(19)
C17-C18-C19	118.9(2)	N3-S1-C14-C19	66.9(2)

C7-N1-C1-N3	174.11(19)
S1-N3-C1-N1	89.6(2)
O2-S1-C14-C15	129.6(2)
O1-S1-C14-C19	-179.04(19
N3-S1-C14-C19	66.9(2)
S1-C14-C15-C16	-178.1(2)
C15-C16-C17-C18	-1.1(4)
C1-N1-C7-N2	0.1(2)
C3-N2-C7-N1	179.93(19)
C3-N2-C7-C6	-1.8(3)
C7-N2-C3-C4	1.6(3)
N2-C3-C4-C5	-0.2(4)
C4-C5-C6-C7	0.9(4)
N2-C7-C6-C5	0.5(3)
C20-C11-C12-C13	179.0(2)
C9-C8-C13-C12	1.1(4)
C15-C14-C19-C18	-1.3(4)
C16-C17-C18-C19	0.0(4)
C14-C19-C18-C17	1.3(4)

Таблица 3.20. Кристаллографические данные, детали измерений и уточнения структуры для соединения L14

CCDC number	1937001
Empirical formula	$C_{19}H_{13}N_3O_2SCl_2$
Formula weight / g·mol ⁻¹	418.28
Crystal system	monoclinic
Space group	$P 2_1/c$
<i>a</i> / Å	7.9253(17)
b / Å	14.483(3)
c / Å	16.532(3)
α, β, γ / °	90, 100.751(6), 90
Volume / Å ³	1864.3(7)
Ζ	4
Density (calculated) / $g \cdot cm^{-3}$	1.490
Absorptions coefficient / mm ⁻¹	0.480
Radiation $(\lambda / \text{Å})$	ΜοΚα (0.71073)
Temperature / K	296 (2)
2Θ range / °	2.51 - 27.00
Crystal size / mm	$0.22\times0.06\times0.05$
Crystal habit	colorless, needle
F(000)	856
Index ranges	-10<=h<=10, -18<=k<=18, -21<=l<=20
Reflections collected	46178
Independent reflections	4023 [R(int) = 0.1898]
Number of ref. parameters	244
$R_1 / wR_2 [I > 2\sigma(I)]$	0.0715 / 0.1818
R_1 / wR_2 (all data)	0.1609 / 0.2219
Goodness-of-fit on F ²	1.094
Completeness [%]	99.4
Largest diff. peak and hole / $e \cdot Å^{-3}$	0.336/ -0.575
Weight scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0790P) ² +3.3595P] where P=(F_o^2 +2 F_c^2)/3

Таблица 3.21. Селективные длины связей, углы при связях и торсионные углы для соединения L14

Bond	l, Å	Angle	φ, °	Torsion angle	θ, °
Cl2-C17	1.727(5)	O2-S1-O1	120.7(3)	O2-S1-N3-C1	165.7(4)
S1-O2	1.423(4)	O1-S1-N3	106.8(2)	C14-S1-N3-C1	-80.0(4)
S1-N3	1.643(4)	O1-S1-C14	107.9(2)	Cl2-C17-C16-C15	178.7(4)
N3-C1	1.408(6)	C1-N3-S1	118.8(3)	C16-C15-C14-C19	0.9(8)
N1-C7	1.330(6)	C3-N2-C7	121.7(4)	O2-S1-C14-C15	5.9(5)
N2-C3	1.380(6)	C7-N2-C2	107.6(4)	N3-S1-C14-C15	-107.9(4)
N2-C2	1.401(6)	C16-C17-Cl2	120.2(4)	O1-S1-C14-C19	-41.9(5)
C17-C18	1.390(7)	C17-C16-C15	119.7(5)	C7-N1-C1-C2	2.3(6)
C1-C2	1.379(7)	C15-C14-C19	120.0(5)	S1-N3-C1-N1	81.5(5)
C8-C9	1.393(7)	C19-C14-S1	119.3(4)	N1-C1-C2-N2	-1.6(5)
C13-C12	1.382(7)	N1-C1-N3	121.3(4)	N1-C1-C2-C8	176.1(5)
C12-C11	1.366(8)	C1-C2-N2	103.5(4)	C3-N2-C2-C1	-173.4(5)
C11-C10	1.384(8)	N2-C2-C8	122.5(4)	C3-N2-C2-C8	8.7(8)
C18-C19	1.370(7)	C9-C8-C2	120.4(4)	C1-C2-C8-C9	47.9(8)
C3-C4	1.354(7)	C12-C13-C8	119.7(5)	C1-C2-C8-C13	-132.4(6)
C4-C5	1.422(8)	C12-C11-C10	120.4(5)	C9-C8-C13-C12	0.9(8)
C10-C9	1.381(7)	C18-C19-C14	120.0(5)	C8-C13-C12-C11	0.1(8)
Cl1-C4	1.724(6)	N1-C7-C6	130.6(5)	C16-C17-C18-C19	1.4(8)
S1-O1	1.433(4)	C4-C3-N2	118.4(5)	C17-C18-C19-C14	-1.6(8)
S1-C14	1.763(5)	C3-C4-Cl1	118.8(5)	S1-C14-C19-C18	179.5(4)
N1-C1	1.366(6)	C6-C5-C4	119.1(5)	C1-N1-C7-C6	177.4(5)
N2-C7	1.394(6)	C9-C10-C11	120.3(5)	C2-N2-C7-N1	1.2(5)
C17-C16	1.378(8)	O2-S1-N3	106.2(2)	C2-N2-C7-C6	-178.3(4)
C16-C15	1.381(7)	O2-S1-C14	106.9(2)	C2-N2-C3-C4	174.2(5)
C15-C14	1.379(7)	N3-S1-C14	107.9(2)	N2-C3-C4-Cl1	-176.2(4)
C14-C19	1.407(7)	C7-N1-C1	105.4(4)	Cl1-C4-C5-C6	175.6(4)
C2-C8	1.472(7)	C3-N2-C2	130.4(4)	N1-C7-C6-C5	-176.0(5)
C8-C13	1.401(7)	C16-C17-C18	121.2(5)	C12-C11-C10-C9	1.2(9)
C7-C6	1.398(7)	C18-C17-Cl2	118.6(4)	C13-C8-C9-C10	-0.9(8)
C5-C6	1.361(8)	C14-C15-C16	119.9(5)	O1-S1-N3-C1	35.7(4)

C15-C14-S1	120.7(4)	C18-C17-C16-C15	0.0(8)
N1-C1-C2	112.9(4)	C17-C16-C15-C14	-1.1(8)
C2-C1-N3	125.8(4)	C16-C15-C14-S1	-178.1(4)
C1-C2-C8	134.0(5)	O1-S1-C14-C15	137.1(4)
C9-C8-C13	119.5(5)	O2-S1-C14-C19	-173.1(4)
C13-C8-C2	120.1(4)	N3-S1-C14-C19	73.1(4)
C11-C12-C13	120.5(5)	C7-N1-C1-N3	-178.5(4)
C19-C18-C17	119.2(5)	S1-N3-C1-C2	-99.5(5)
N1-C7-N2	110.6(4)	N3-C1-C2-N2	179.3(4)
N2-C7-C6	118.8(5)	N3-C1-C2-C8	-3.0(9)
C3-C4-C5	121.7(5)	C7-N2-C2-C1	0.2(5)
C5-C4-Cl1	119.5(4)	C7-N2-C2-C8	-177.7(4)
C5-C6-C7	120.2(5)	N2-C2-C8-C9	-134.8(5)
C10-C9-C8	119.6(5)	N2-C2-C8-C13	44.8(7)
		C2-C8-C13-C12	-178.8(5)
		C13-C12-C11-C10	-1.2(9)
		Cl2-C17-C18-C19	-177.3(4)
		C15-C14-C19-C18	0.5(8)
		C1-N1-C7-N2	-2.1(5)
		C3-N2-C7-N1	175.5(4)
		C3-N2-C7-C6	-4.1(7)
		C7-N2-C3-C4	1.4(7)
		N2-C3-C4-C5	1.9(8)
		C3-C4-C5-C6	-2.5(8)
		C4-C5-C6-C7	-0.3(8)
		N2-C7-C6-C5	3.5(8)
		С11-С10-С9-С8	-0.2(9)
		C2-C8-C9-C10	178.8(5)

Таблица 3.22. Кристаллографические данные, детали измерений и уточнения структуры для соединения L15

Empirical formula	$C_{21}H_{19}N_3O_2S$
Formula weight / g·mol ⁻¹	377.45
Crystal system	monoclinic
Space group	$P2_1/n$
<i>a</i> / Å	10.135(2)
b / Å	15.033(3)
c / Å	13.072(2)
α, β, γ / °	90, 107.981(7), 90
Volume / Å ³	1894.4(7)
Ζ	4
Density (calculated) / $g \cdot cm^{-3}$	1.323
Absorptions coefficient / mm ⁻¹	0.192
Radiation $(\lambda / \text{Å})$	ΜοΚα (0.71073)
Temperature / K	296(2)
2Θ range / °	2.51 - 30.10
Crystal size / mm	$0.27 \times 0.18 \times 0.17$
Crystal habit	colourless, prism
F(000)	792
Index ranges	-14<=h<=14, -21<=k<=21, -18<=l<=18
Reflections collected	54610
Independent reflections	5554 [R(int) = 0.0620]
Number of ref. parameters	246
$R_1 / wR_2 [I > 2\sigma(I)]$	0.0566 / 0.1296
R_1 / wR_2 (all data)	0.1065 / 0.1520
Goodness-of-fit on F ²	1.035
Completeness [%]	99.5
Largest diff. peak and hole / $e \cdot Å^{-3}$	0.432/ -0.442
Weight scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0652P) ² +0.6182P] where P=(F_o^2 +2 F_c^2)/3

Таблица 3.23. Селективные длины связей, углы при связях и торсионные углы для соединения L15

Bond	l, Å	Angle	φ, °	Torsion angle	θ, °
S1-O2	1.4278(15)	02-S1-O1	120.18(10)	O2-S1-N3-C1	-163.21(14)
S1-N3	1.6365(18)	O1-S1-N3	106.89(9)	C14-S1-N3-C1	82.48(15)
N1-C7	1.333(2)	O1-S1-C14	108.38(10)	C20-C5-C6-C7	178.6(2)
N3-C1	1.408(2)	C7-N1-C1	104.92(15)	C1-N1-C7-C6	175.7(2)
N2-C3	1.376(2)	C3-N2-C7	121.41(16)	C2-N2-C7-N1	2.1(2)
N2-C2	1.390(2)	C7-N2-C2	107.38(14)	C2-N2-C7-C6	-175.78(17)
C5-C4	1.418(3)	C6-C5-C20	121.9(2)	C5-C6-C7-N2	-0.9(3)
C14-C19	1.385(3)	C5-C6-C7	120.40(18)	C7-N1-C1-N3	-178.08(17)
C19-C18	1.384(3)	N1-C7-C6	130.67(17)	S1-N3-C1-N1	-92.5(2)
C18-C17	1.378(3)	C2-C1-N1	112.53(16)	O1-S1-C14-C19	44.14(19)
C17-C16	1.377(4)	N1-C1-N3	121.62(15)	O2-S1-C14-C15	-5.3(2)
C8-C9	1.374(3)	C19-C14-S1	119.88(15)	N3-S1-C14-C15	108.77(17)
C13-C12	1.393(4)	C18-C19-C14	119.63(19)	S1-C14-C19-C18	179.47(16)
C12-C11	1.370(5)	C16-C17-C18	118.2(2)	C19-C18-C17-C16	0.8(3)
C11-C10	1.354(5)	C18-C17-C21	121.3(2)	N1-C1-C2-N2	0.4(2)
C10-C9	1.393(3)	C1-C2-C8	132.02(17)	N1-C1-C2-C8	-172.6(2)
C15-C16	1.387(3)	C9-C8-C13	119.4(2)	C3-N2-C2-C1	-178.5(2)
S1-O1	1.4299(15)	C13-C8-C2	122.2(2)	C3-N2-C2-C8	-4.8(3)
S1-C14	1.765(2)	C11-C12-C13	120.4(3)	C1-C2-C8-C9	58.1(3)
N1-C1	1.371(2)	C11-C10-C9	120.2(3)	C1-C2-C8-C13	-122.8(3)
N2-C7	1.389(2)	C4-C3-N2	119.10(19)	C9-C8-C13-C12	0.3(3)
C20-C5	1.511(3)	C16-C15-C14	119.2(2)	C8-C13-C12-C11	0.2(4)
C5-C6	1.359(3)	O2-S1-N3	106.69(10)	C12-C11-C10-C9	0.6(4)
C6-C7	1.408(3)	O2-S1-C14	107.04(10)	C2-C8-C9-C10	178.7(2)
C1-C2	1.368(3)	N3-S1-C14	107.01(8)	C7-N2-C3-C4	-0.8(3)
C14-C15	1.389(3)	C1-N3-S1	120.10(13)	N2-C3-C4-C5	-0.8(3)
C17-C21	1.517(3)	C3-N2-C2	131.14(16)	C20-C5-C4-C3	-177.7(2)
C2-C8	1.472(2)	C6-C5-C4	118.73(19)	S1-C14-C15-C16	-179.53(17)
C8-C13	1.391(3)	C4-C5-C20	119.4(2)	C21-C17-C16-C15	179.7(2)
C3-C4	1.342(3)	N1-C7-N2	110.76(15)	O1-S1-N3-C1	-33.46(16)
		N2-C7-C6	118.52(17)	C4-C5-C6-C7	-0.6(3)
		C2-C1-N3	125.84(16)	C1-N1-C7-N2	-1.8(2)
		C19-C14-C15	119.7(2)	C3-N2-C7-N1	179.53(17)

C15-C14-S1	120.39(16)	C3-N2-C7-C6	1.7(3)
C17-C18-C19	121.5(2)	C5-C6-C7-N1	-178.3(2)
C16-C17-C21	120.5(2)	C7-N1-C1-C2	0.9(2)
C1-C2-N2	104.37(15)	S1-N3-C1-C2	88.7(2)
N2-C2-C8	123.24(16)	O2-S1-C14-C19	175.12(17)
C9-C8-C2	118.39(19)	N3-S1-C14-C19	-70.81(18)
C8-C13-C12	119.3(3)	O1-S1-C14-C15	-136.28(17)
C10-C11-C12	120.4(2)	C15-C14-C19-C18	-0.1(3)
C8-C9-C10	120.3(3)	C14-C19-C18-C17	-0.3(3)
C3-C4-C5	121.8(2)	C19-C18-C17-C21	-179.8(2)
C17-C16-C15	121.7(2)	N3-C1-C2-N2	179.26(18)
		N3-C1-C2-C8	6.3(4)
		C7-N2-C2-C1	-1.4(2)
		C7-N2-C2-C8	172.32(18)
		N2-C2-C8-C9	-113.7(2)
		N2-C2-C8-C13	65.4(3)
		C2-C8-C13-C12	-178.8(2)
		C13-C12-C11-C10	-0.7(4)
		C13-C8-C9-C10	-0.4(3)
		C11-C10-C9-C8	-0.1(4)
		C2-N2-C3-C4	175.9(2)
		C6-C5-C4-C3	1.5(3)
		C19-C14-C15-C16	0.1(3)
		C18-C17-C16-C15	-0.9(4)
		C14-C15-C16-C17	0.4(4)

Таблица 3.24. Кристаллографические данные, детали измерений и уточнения структуры для соединения C1

Empirical formula Formula weight / g·mol⁻¹ Crystal system Space group $\begin{array}{l} C_{46}H_{32}N_6O_4S_4Cl_4Cu\\ 1066.36\\ monoclinic\\ P\ 2_1/n \end{array}$

<i>a</i> / Å	16.8816(8)
b / Å	13.9042(7)
<i>c</i> / Å	22.9606(12)
α, β, γ / °	90, 102.378(2), 90
Volume / Å ³	5264.2(5)
Z	4
Density (calculated) / $g \cdot cm^{-3}$	1.345
Absorptions coefficient / mm ⁻¹	0.822
Radiation $(\lambda / \text{\AA})$	ΜοΚα (0.71073)
Temperature / K	100(2)
2Θ range / °	1.92 - 28.00
Crystal size / mm	$0.19 \times 0.18 \times 0.09$
Crystal habit	red, phombohedron
F(000)	2172
Index ranges	-22<=h<=22, -18<=k<=18, -30<=l<=30
Reflections collected	297842
Independent reflections	12718 [R(int) = 0.0685]
Number of ref. parameters	586
$R_1 / wR_2 \ [I > 2\sigma(I)]$	0.0556 / 0.1851
$\mathbf{R}_1 / \mathbf{w} \mathbf{R}_2$ (all data)	0.0687 / 0.1979
Goodness-of-fit on F ²	1.101
Completeness [%]	100.0
Largest diff. peak and hole / $e \cdot Å^{-3}$	3.268/ -0.491
Weight scheme	$w=1/[\sigma^2(F_o^2)+(0.1071P)^2+19.1649P]$
weight scheme	where $P = (F_o^2 + 2F_c^2)/3$

Таблица 3.25. Селективные длины связей, углы при связях и торсионные углы для соединения С1

Bond	l, Å	Angle	φ, °	Torsion angle	θ, °
Cu1-N1	1.980(3)	N1-Cu1-N4	93.98(12)	C25-N6-S4-O3	-28.6(3)
Cu1-Cl4	2.2429(9)	N4-Cu1-Cl4	150.59(9)	C25-N6-S4-C35	87.1(3)
S3-C28	1.725(3)	N4-Cu1-Cl3	94.44(8)	Cl4-Cu1-N1-C5	-35.7(3)

Cl2-C38	1.731(4)	C28-S3-C24	90.32(17)	N4-Cu1-N1-C4	-44.8(3)
N6-C25	1.399(4)	O3-S4-O4	121.4(2)	Cl3-Cu1-N1-C4	59.8(4)
S4-O4	1.431(3)	O4-S4-N6	105.52(18)	Cl4-Cu1-N4-C28	-133.8(3)
S1-C5	1.717(4)	O4-S4-C35	107.95(18)	N1-Cu1-N4-C27	-44.4(3)
S2-O2	1.430(3)	C5-S1-C1	90.46(17)	Cl3-Cu1-N4-C27	167.4(3)
S2-N3	1.640(3)	O2-S2-N3	107.72(16)	S4-N6-C25-N5	87.0(4)
N1-C5	1.339(4)	O2-S2-C12	107.86(17)	N6-C25-N5-C28	172.3(3)
N4-C28	1.340(4)	N3-S2-C12	105.82(16)	N6-C25-N5-C26	-8.2(6)
C25-C24	1.353(5)	C5-N1-Cu1	127.3(2)	Cu1-N1-C5-N2	-163.3(2)
N5-C28	1.352(4)	C28-N4-C27	104.6(3)	Cu1-N1-C5-S1	16.4(6)
N2-C5	1.358(4)	C27-N4-Cu1	125.4(2)	C2-N2-C5-N1	-180.0(3)
N2-C2	1.401(4)	C24-C25-N5	111.7(3)	C2-N2-C5-S1	0.2(4)
C35-C36	1.391(5)	C28-N5-C26	108.8(3)	C1-S1-C5-N2	-1.5(3)
C40-C39	1.390(6)	C26-N5-C25	136.1(3)	O1-S2-N3-C2	175.0(3)
C39-C38	1.390(6)	C5-N2-C2	114.7(3)	C27-N4-C28-N5	-0.8(4)
C38-C37	1.387(6)	N1-C5-N2	110.9(3)	C27-N4-C28-S3	178.8(3)
C26-C27	1.369(5)	N2-C5-S1	111.4(2)	C26-N5-C28-N4	0.5(4)
C27-C41	1.472(5)	N4-C28-N5	111.0(3)	C26-N5-C28-S3	-179.2(2)
C41-C42	1.392(5)	N5-C28-S3	111.2(2)	C24-S3-C28-N4	-178.5(4)
C29-C30	1.398(5)	C25-C24-S3	111.7(3)	N6-C25-C24-C29	13.0(7)
C30-C31	1.380(6)	C36-C35-C40	121.5(4)	N6-C25-C24-S3	-170.6(3)
C31-C32	1.392(6)	C40-C35-S4	120.2(3)	C28-S3-C24-C25	-2.4(3)
C32-C33	1.388(6)	C38-C39-C40	119.0(4)	O3-S4-C35-C36	-162.4(3)
C33-C34	1.377(5)	C37-C38-Cl2	118.8(3)	N6-S4-C35-C36	83.4(3)
C4-C18	1.474(5)	C36-C37-C38	118.8(4)	O4-S4-C35-C40	155.8(3)
C18-C19	1.399(6)	C27-C26-N5	105.4(3)	C36-C35-C40-C39	-0.4(6)
C1-C6	1.473(5)	C26-C27-C41	126.4(3)	C35-C40-C39-C38	0.5(6)
C12-C13	1.391(5)	C46-C41-C42	119.6(4)	C40-C39-C38-Cl2	-179.6(3)
C14-C13	1.392(5)	C42-C41-C27	120.6(3)	Cl2-C38-C37-C36	179.6(3)
C6-C7	1.399(5)	C44-C43-C42	120.3(4)	C40-C35-C36-C37	0.4(6)
Cu1-N4	1.987(3)	C44-C45-C46	119.8(4)	C28-N5-C26-C27	0.0(4)
Cu1-Cl3	2.2464(9)	C30-C29-C34	118.2(3)	N5-C26-C27-N4	-0.5(4)
S3-C24	1.767(4)	C34-C29-C24	122.1(3)	C28-N4-C27-C26	0.8(4)
Cl1-C15	1.733(4)	C30-C31-C32	120.5(4)	C28-N4-C27-C41	178.5(3)

N6-S4	1.641(3)	C34-C33-C32	120.5(4)	C26-C27-C41-C46	121.1(4)
S4-O3	1.429(3)	C3-C4-N1	110.5(3)	C26-C27-C41-C42	-56.8(5)
S4-C35	1.758(4)	N1-C4-C18	122.1(3)	C46-C41-C42-C43	1.2(6)
S1-C1	1.754(3)	C23-C18-C4	120.5(4)	C41-C42-C43-C44	-2.4(6)
S2-O1	1.431(3)	C20-C19-C18	120.3(4)	C43-C44-C45-C46	-0.4(7)
S2-C12	1.756(4)	C22-C21-C20	121.0(4)	C27-C41-C46-C45	-177.6(4)
N1-C4	1.399(5)	C18-C23-C22	119.7(4)	C25-C24-C29-C30	149.2(4)
N4-C27	1.404(4)	C2-C1-C6	130.5(3)	C25-C24-C29-C34	-28.5(6)
C25-N5	1.403(4)	C6-C1-S1	117.4(3)	C34-C29-C30-C31	1.4(6)
N5-C26	1.373(4)	C1-C2-N2	111.3(3)	C29-C30-C31-C32	2.2(6)
N2-C3	1.389(4)	C17-C12-C13	121.8(3)	C31-C32-C33-C34	1.4(6)
N3-C2	1.396(5)	C13-C12-S2	119.6(3)	C30-C29-C34-C33	-3.7(6)
C24-C29	1.478(5)	C15-C16-C17	118.8(3)	C5-N1-C4-C3	-0.3(4)
C35-C40	1.394(6)	C16-C15-Cl1	118.9(3)	C5-N1-C4-C18	176.9(3)
C37-C36	1.384(5)	C15-C14-C13	118.7(3)	C3-C4-C18-C23	136.3(4)
C41-C46	1.388(6)	C11-C6-C7	118.6(3)	C3-C4-C18-C19	-41.4(6)
C42-C43	1.398(6)	C7-C6-C1	118.2(3)	C23-C18-C19-C20	-1.1(6)
C43-C44	1.386(8)	C9-C10-C11	120.5(4)	C18-C19-C20-C21	1.1(7)
C44-C45	1.380(7)	C9-C8-C7	119.8(4)	C20-C21-C22-C23	-0.5(8)
C45-C46	1.403(5)	N1-Cu1-Cl4	93.85(9)	C4-C18-C23-C22	-177.3(4)
C29-C34	1.409(5)	N1-Cu1-Cl3	147.16(9)	N1-C4-C3-N2	0.1(4)
C4-C3	1.366(5)	Cl4-Cu1-Cl3	94.17(3)	C5-N2-C3-C4	0.2(4)
C18-C23	1.391(6)	C25-N6-S4	123.6(3)	C5-S1-C1-C2	2.6(3)
C19-C20	1.394(6)	O3-S4-N6	106.93(17)	C6-C1-C2-N3	-8.9(7)
C20-C21	1.385(8)	O3-S4-C35	109.13(19)	C6-C1-C2-N2	172.5(3)
C21-C22	1.377(8)	N6-S4-C35	104.67(17)	S2-N3-C2-C1	98.0(4)
C22-C23	1.394(6)	O2-S2-O1	120.61(17)	C5-N2-C2-C1	1.8(4)
C1-C2	1.360(5)	O1-S2-N3	105.59(17)	C5-N2-C2-N3	-177.0(3)
C12-C17	1.390(5)	O1-S2-C12	108.34(16)	O2-S2-C12-C17	168.0(3)
C17-C16	1.387(5)	C5-N1-C4	105.1(3)	N3-S2-C12-C17	-76.9(3)
C16-C15	1.381(5)	C4-N1-Cu1	125.5(2)	O1-S2-C12-C13	-142.8(3)
C15-C14	1.385(5)	C28-N4-Cu1	128.9(2)	C13-C12-C17-C16	1.1(6)
C6-C11	1.387(5)	C24-C25-N6	131.2(3)	C12-C17-C16-C15	-0.6(6)
C11-C10	1.393(5)	N6-C25-N5	116.8(3)	C17-C16-C15-Cl1	178.3(3)

C10-C9	1.389(6)	C28-N5-C25	115.1(3)	Cl1-C15-C14-C13	-177.8(3)
C9-C8	1.382(6)	C5-N2-C3	108.3(3)	C17-C12-C13-C14	-0.7(6)
C8-C7	1.386(5)	C3-N2-C2	137.0(3)	C2-C1-C6-C11	47.0(6)
		N1-C5-S1	137.7(3)	C2-C1-C6-C7	-132.9(4)
		C2-N3-S2	120.3(2)	C7-C6-C11-C10	1.3(6)
		N4-C28-S3	137.8(3)	C6-C11-C10-C9	-0.3(6)
		C25-C24-C29	130.0(3)	C10-C9-C8-C7	1.1(7)
		C29-C24-S3	118.3(3)	C11-C6-C7-C8	-1.2(7)
		C36-C35-S4	118.2(3)	C25-N6-S4-O4	-159.1(3)
		C39-C40-C35	119.0(4)	N4-Cu1-N1-C5	115.9(3)
		C37-C38-C39	122.2(4)	Cl3-Cu1-N1-C5	-139.6(2)
		C39-C38-Cl2	119.0(3)	Cl4-Cu1-N1-C4	163.6(3)
		C37-C36-C35	119.6(4)	N1-Cu1-N4-C28	121.1(3)
		C26-C27-N4	110.3(3)	Cl3-Cu1-N4-C28	-27.2(3)
		N4-C27-C41	123.3(3)	Cl4-Cu1-N4-C27	60.7(4)
		C46-C41-C27	119.8(3)	S4-N6-C25-C24	-99.6(4)
		C41-C42-C43	119.8(4)	C24-C25-N5-C28	-2.3(4)
		C45-C44-C43	120.1(4)	C24-C25-N5-C26	177.2(4)
		C41-C46-C45	120.3(4)	C4-N1-C5-N2	0.5(4)
		C30-C29-C24	119.6(3)	C4-N1-C5-S1	-179.8(3)
		C31-C30-C29	120.7(4)	C3-N2-C5-N1	-0.4(4)
		C33-C32-C31	119.3(4)	C3-N2-C5-S1	179.7(2)
		C33-C34-C29	120.6(4)	C1-S1-C5-N1	178.7(4)
		C3-C4-C18	127.3(3)	O2-S2-N3-C2	44.9(3)
		C23-C18-C19	119.7(4)	C12-S2-N3-C2	-70.3(3)
		C19-C18-C4	119.8(3)	Cu1-N4-C28-N5	-168.6(2)
		C21-C20-C19	119.2(5)	Cu1-N4-C28-S3	11.0(6)
		C21-C22-C23	120.1(4)	C25-N5-C28-N4	-179.8(3)
		C4-C3-N2	105.2(3)	C25-N5-C28-S3	0.4(4)
		C2-C1-S1	112.0(3)	C24-S3-C28-N5	1.1(3)
		C1-C2-N3	130.8(3)	N5-C25-C24-C29	-173.3(3)
		N3-C2-N2	117.8(3)	N5-C25-C24-S3	3.1(4)
		C17-C12-S2	118.6(3)	C28-S3-C24-C29	174.4(3)
		C16-C17-C12	119.2(3)	O4-S4-C35-C36	-28.7(4)

C16-C15-C14	122.6(3)	O3-S4-C35-C40	22.1(4)
C14-C15-Cl1	118.5(3)	N6-S4-C35-C40	-92.1(3)
C14-C13-C12	118.9(3)	S4-C35-C40-C39	174.9(3)
C11-C6-C1	123.1(3)	C40-C39-C38-C37	-0.6(6)
C6-C11-C10	120.2(4)	C39-C38-C37-C36	0.6(6)
C8-C9-C10	119.7(4)	C38-C37-C36-C35	-0.5(6)
C8-C7-C6	121.1(4)	S4-C35-C36-C37	-175.0(3)

C25-N5-C26-C27

N5-C26-C27-C41

Cu1-N4-C27-C26

Cu1-N4-C27-C41

N4-C27-C41-C46

N4-C27-C41-C42

C27-C41-C42-C43

C42-C43-C44-C45

C42-C41-C46-C45

C44-C45-C46-C41

S3-C24-C29-C30

S3-C24-C29-C34

C24-C29-C30-C31

C30-C31-C32-C33

C32-C33-C34-C29

C24-C29-C34-C33

Cu1-N1-C4-C3

Cu1-N1-C4-C18

N1-C4-C18-C23

N1-C4-C18-C19

C4-C18-C19-C20

C19-C20-C21-C22

C19-C18-C23-C22

C21-C22-C23-C18

C18-C4-C3-N2

C2-N2-C3-C4

C5-S1-C1-C6

-179.6(4)

-178.1(3)

169.1(2)

-13.1(5)

-56.3(5)

125.9(4)

179.1(3)

2.0(6)

0.3(6)

-0.7(6)

-27.0(5)

155.2(3)

-176.4(4)

-3.7(6)

2.3(6)

174.1(3)

163.8(2)

-19.0(5)

-40.4(5)

141.9(4)

176.6(4)

-0.3(8)

0.4(6)

0.4(7)

-176.9(3)

179.6(4)

-173.5(3)

Таблица 3.26. Кристаллографические данные, детали измерений и уточнения структуры для соединения С2

Empirical formula	$C_{34}H_{26}N_6O_5S_4CuCl_4\ (C_{34}H_{24}N_6O_4S_4Cl_4Cu,$
	H ₂ O)
Formula weight / g·mol ⁻¹	932.19
Crystal system	trigonal
Space group	R -3
<i>a</i> / Å	47.248(4)
b / Å	47.248(4)
<i>c</i> / Å	10.1290(8)
α, β, γ / °	90, 90, 120
Volume / Å ³	19582.(3)

Density (calculated) / g·cm ⁻³ 1.423Absorptions coefficient / mm ⁻¹ 0.984Radiation $(\lambda / Å)$ MoKa (0.71073)Temperature / K100(2) 2Θ range / ° $2.07 - 25.45$ Crystal size / mm $0.25 \times 0.06 \times 0.05$ Crystal habitorange, needleF(000)8514Index ranges $-56<=h<=57, -56<=k<=57, -12<=l<=12$ Reflections collected118307Independent reflections8037 [R(int) = 0.4153]Number of ref. parameters494 R_1 / wR_2 [$I > 2\sigma(I)$] $0.0740 / 0.1541$ R_1 / wR_2 (all data) $0.1584 / 0.1967$
Absorptions coefficient / mm ⁻¹ 0.984Radiation $(\lambda / Å)$ MoKa (0.71073)Temperature / K100(2) 2Θ range / ° $2.07 - 25.45$ Crystal size / mm $0.25 \times 0.06 \times 0.05$ Crystal habitorange, needleF(000)8514Index ranges $-56 <=h <=57, -56 <=k <=57, -12 <=l <=12$ Reflections collected118307Independent reflections8037 [R(int) = 0.4153]Number of ref. parameters494 R_1 / wR_2 [$I > 2\sigma(I)$] $0.0740 / 0.1541$ R_1 / wR_2 (all data) $0.1584 / 0.1967$
Radiation $(\lambda / \text{Å})$ MoKa (0.71073) Temperature / K100(2) 2Θ range / ° $2.07 - 25.45$ Crystal size / mm $0.25 \times 0.06 \times 0.05$ Crystal habitorange, needleF(000) 8514 Index ranges $-56<=h<=57, -56<=k<=57, -12<=l<=12$ Reflections collected 118307 Independent reflections 8037 [R(int) = 0.4153]Number of ref. parameters 494 R_1 / wR_2 [$I > 2\sigma(I)$] $0.0740 / 0.1541$ R_1 / wR_2 (all data) $0.1584 / 0.1967$
Temperature / K100(2) 2Θ range / ° $2.07 - 25.45$ Crystal size / mm $0.25 \times 0.06 \times 0.05$ Crystal habitorange, needleF(000) 8514 Index ranges $-56 <=h <= 57, -56 <=k <= 57, -12 <=l <= 12$ Reflections collected 118307 Independent reflections 8037 [R(int) = 0.4153]Number of ref. parameters 494 R_1 / wR_2 [$I > 2\sigma(I)$] $0.0740 / 0.1541$ R_1 / wR_2 (all data) $0.1584 / 0.1967$
2Θ range / ° $2.07 - 25.45$ Crystal size / mm $0.25 \times 0.06 \times 0.05$ Crystal habitorange, needleF(000) 8514 Index ranges $-56<=h<=57, -56<=k<=57, -12<=l<=12$ Reflections collected 118307 Independent reflections 8037 [R(int) = 0.4153]Number of ref. parameters 494 R_1 / wR_2 [$I > 2\sigma(I)$] $0.0740 / 0.1541$ R_1 / wR_2 (all data) $0.1584 / 0.1967$
Crystal size / mm $0.25 \times 0.06 \times 0.05$ Crystal habitorange, needleF(000) 8514 Index ranges $-56 <=h <=57, -56 <=k <=57, -12 <=l <=12$ Reflections collected 118307 Independent reflections 8037 [R(int) = 0.4153]Number of ref. parameters 494 R_1 / wR_2 [$I > 2\sigma(I)$] $0.0740 / 0.1541$ R_1 / wR_2 (all data) $0.1584 / 0.1967$
Crystal habitorange, needle $F(000)$ 8514 Index ranges $-56 <=h <=57, -56 <=k <=57, -12 <=l <=12$ Reflections collected 118307 Independent reflections $8037 [R(int) = 0.4153]$ Number of ref. parameters 494 $R_1 / wR_2 [I > 2\sigma(I)]$ $0.0740 / 0.1541$ $R_1 / wR_2 (all data)$ $0.1584 / 0.1967$
F(000)8514Index ranges $-56 <=h <=57, -56 <=k <=57, -12 <=l <=12$ Reflections collected118307Independent reflections8037 [R(int) = 0.4153]Number of ref. parameters494 R_1 / wR_2 [$I > 2\sigma(I)$]0.0740 / 0.1541 R_1 / wR_2 (all data)0.1584 / 0.1967
Index ranges $-56 <=h <=57, -56 <=k <=57, -12 <=l <=12$ Reflections collected118307Independent reflections8037 [R(int) = 0.4153]Number of ref. parameters494 R_1 / wR_2 [$I > 2\sigma(I)$]0.0740 / 0.1541 R_1 / wR_2 (all data)0.1584 / 0.1967
Reflections collected 118307 Independent reflections 8037 [R(int) = 0.4153] Number of ref. parameters 494 R_1 / wR_2 [$I > 2\sigma(I)$] 0.0740 / 0.1541 R_1 / wR_2 (all data) 0.1584 / 0.1967
Independent reflections $8037 [R(int) = 0.4153]$ Number of ref. parameters 494 $R_1 / wR_2 [I > 2\sigma(I)]$ $0.0740 / 0.1541$ R_1 / wR_2 (all data) $0.1584 / 0.1967$
Number of ref. parameters 494 R_1 / wR_2 [$I > 2\sigma(I)$] $0.0740 / 0.1541$ R_1 / wR_2 (all data) $0.1584 / 0.1967$
$R_1 / wR_2 \ [I > 2\sigma(I)]$ 0.0740 / 0.1541 $R_1 / wR_2 \ (all \ data)$ 0.1584 / 0.1967
R_1 / wR_2 (all data) 0.1584 / 0.1967
Goodness-of-fit on F^2 1.047
Completeness [%] 99.7
Largest diff. peak and hole / $e\cdot Å^{-3}$ 1.534/ -0.878
Weight scheme $w=1/[\sigma^2(F_o^2)+(0.0548P)^2+321.6373P]$ where $P=(F_o^2+2F_c^2)/3$

Таблица 3.27. Селективные длины связей, углы при связях и торсионные углы для соединения С2

Bond	l, Å	Angle	φ, °	Torsion angle	θ, °
Cu1-N1	1.938(6)	N1-Cu1-N4	144.5(2)	N4-Cu1-N1-C5	92.7(7)
Cu1-Cl2	2.240(2)	N4-Cu1-Cl2	96.12(18)	Cl1-Cu1-N1-C5	-156.0(6)
S1-C5	1.719(7)	N4-Cu1-Cl1	96.17(18)	Cl2-Cu1-N1-C4	178.9(5)
Cl4-C32	1.728(8)	C5-S1-C1	90.3(3)	O1-S2-N3-C2	-36.2(6)
S2-O2	1.438(5)	O1-S2-N3	106.9(3)	C12-S2-N3-C2	79.8(6)
S2-C12	1.760(7)	O1-S2-C12	108.5(3)	Cu1-N1-C4-C3	165.6(5)
S3-C22	1.722(7)	N3-S2-C12	106.8(3)	C5-N2-C3-C4	0.7(8)
S4-O4	1.433(5)	O4-S4-O3	121.0(3)	C3-N2-C2-C1	-175.6(7)

S4-N6	1.628(6)	O3-S4-N6	105.6(3)	C3-N2-C2-N3	5.2(12)
N1-C5	1.347(9)	O3-S4-C29	107.7(3)	S2-N3-C2-C1	-85.0(9)
N2-C3	1.365(9)	C5-N1-C4	103.8(6)	O1-S2-C12-C13	25.1(7)
N2-C2	1.403(9)	C4-N1-Cu1	124.3(5)	N3-S2-C12-C13	-89.9(6)
N5-C20	1.376(9)	C3-N2-C2	137.5(6)	O2-S2-C12-C17	-28.3(7)
C4-C3	1.348(10)	C2-N3-S2	121.1(5)	C13-C12-C17-C16	-1.2(11)
C12-C13	1.381(10)	C22-N5-C19	114.6(6)	C12-C17-C16-C15	1.3(11)
C17-C16	1.380(10)	C3-C4-N1	111.3(6)	C17-C16-C15-Cl3	-179.8(6)
C16-C15	1.379(11)	C1-C2-N2	113.0(6)	Cl3-C15-C14-C13	179.6(6)
C15-C14	1.387(11)	N2-C2-N3	116.0(6)	S2-C12-C13-C14	174.7(5)
C1-C6	1.470(10)	C13-C12-S2	119.0(6)	N2-C2-C1-C6	178.2(7)
C6-C11	1.408(10)	C16-C17-C12	119.1(7)	N2-C2-C1-S1	-0.3(8)
N4-C22	1.326(9)	C16-C15-C14	122.3(7)	C5-S1-C1-C2	0.1(6)
C18-C19	1.352(10)	C14-C15-Cl3	118.3(6)	C4-N1-C5-N2	0.8(7)
C19-N6	1.418(9)	C12-C13-C14	118.7(7)	C4-N1-C5-S1	-176.0(7)
C29-C34	1.402(10)	C2-C1-S1	111.3(5)	C3-N2-C5-N1	-1.0(8)
C31-C30	1.384(11)	N1-C5-N2	110.5(6)	C3-N2-C5-S1	176.8(5)
C23-C24	1.394(10)	N2-C5-S1	111.7(5)	C1-S1-C5-N1	177.1(8)
Cu1-N4	1.944(6)	C7-C6-C1	121.4(6)	C2-C1-C6-C7	140.8(8)
Cu1-Cl1	2.247(2)	C10-C11-C6	119.5(7)	C2-C1-C6-C11	-39.9(12)
S1-C1	1.775(7)	C8-C9-C10	120.6(7)	C7-C6-C11-C10	0.4(11)
S2-O1	1.429(5)	C8-C7-C6	121.6(7)	C6-C11-C10-C9	0.1(12)
S2-N3	1.639(6)	C22-N4-Cu1	129.6(5)	C10-C9-C8-C7	0.6(11)
Cl3-C15	1.738(8)	N4-C22-N5	111.3(6)	C11-C6-C7-C8	-0.4(11)
S3-C18	1.760(7)	N5-C22-S3	111.1(5)	N1-Cu1-N4-C22	-83.8(8)
S4-O3	1.434(5)	C19-C18-S3	111.4(5)	Cl1-Cu1-N4-C22	164.6(6)
S4-C29	1.754(8)	C18-C19-N5	112.5(6)	Cl2-Cu1-N4-C21	-161.9(5)
N1-C4	1.407(9)	N5-C19-N6	116.6(6)	C21-N4-C22-N5	0.3(8)
N2-C5	1.366(9)	C20-C21-N4	109.7(6)	C21-N4-C22-S3	179.5(7)
N3-C2	1.415(9)	C30-C29-C34	121.1(7)	C20-N5-C22-N4	0.1(8)
N5-C22	1.363(9)	C34-C29-S4	119.0(6)	C20-N5-C22-S3	-179.3(5)
N5-C19	1.384(9)	C32-C33-C34	119.7(7)	C18-S3-C22-N4	178.5(8)
C2-C1	1.343(10)	C31-C32-Cl4	119.0(7)	C22-S3-C18-C19	2.4(6)
C12-C17	1.401(10)	C32-C31-C30	119.9(8)	C23-C18-C19-N5	178.8(7)

C14-C13	1.389(10)	C28-C23-C24	119.7(7)	C23-C18-C19-N6	5.1(13)
C6-C7	1.385(10)	C24-C23-C18	119.5(7)	C22-N5-C19-C18	0.3(9)
C11-C10	1.379(10)	C26-C27-C28	121.4(8)	C22-N5-C19-N6	174.9(6)
C10-C9	1.383(11)	C24-C25-C26	119.9(8)	C22-N5-C20-C21	-0.5(8)
C9-C8	1.364(10)	N1-Cu1-Cl2	97.41(18)	N5-C20-C21-N4	0.6(8)
C8-C7	1.375(10)	N1-Cu1-Cl1	97.23(18)	Cu1-N4-C21-C20	-172.5(5)
N4-C21	1.412(9)	Cl2-Cu1-Cl1	134.79(8)	N5-C19-N6-S4	-88.9(7)
C18-C23	1.474(10)	O1-S2-O2	120.7(3)	O3-S4-N6-C19	158.2(5)
C20-C21	1.351(10)	O2-S2-N3	104.7(3)	O4-S4-C29-C30	-19.6(7)
C29-C30	1.396(10)	O2-S2-C12	108.3(3)	N6-S4-C29-C30	95.2(6)
C34-C33	1.383(10)	C22-S3-C18	90.3(3)	O3-S4-C29-C34	28.0(7)
C33-C32	1.382(11)	O4-S4-N6	107.0(3)	C30-C29-C34-C33	-1.3(11)
C32-C31	1.382(11)	O4-S4-C29	108.3(3)	C29-C34-C33-C32	1.7(11)
C23-C28	1.386(10)	N6-S4-C29	106.4(3)	C34-C33-C32-Cl4	-179.7(6)
C28-C27	1.378(11)	C5-N1-Cu1	130.0(5)	Cl4-C32-C31-C30	179.2(6)
C27-C26	1.369(12)	C3-N2-C5	108.7(6)	C34-C29-C30-C31	0.8(11)
C26-C25	1.387(11)	C5-N2-C2	113.8(6)	C19-C18-C23-C28	36.8(12)
C25-C24	1.378(11)	C22-N5-C20	107.4(6)	C19-C18-C23-C24	-139.8(8)
		C20-N5-C19	138.0(6)	C24-C23-C28-C27	-0.4(12)
		C4-C3-N2	105.7(6)	C23-C28-C27-C26	-0.3(13)
		C1-C2-N3	131.0(7)	C27-C26-C25-C24	-0.1(14)
		C13-C12-C17	121.9(7)	C28-C23-C24-C25	0.8(12)
		C17-C12-S2	118.8(6)	Cl2-Cu1-N1-C5	-18.9(6)
		C15-C16-C17	118.9(7)	N4-Cu1-N1-C4	-69.5(7)
		C16-C15-Cl3	119.3(6)	Cl1-Cu1-N1-C4	41.8(5)
		C15-C14-C13	119.1(7)	O2-S2-N3-C2	-165.4(5)
		C2-C1-C6	131.6(7)	C5-N1-C4-C3	-0.4(8)
		C6-C1-S1	117.0(5)	N1-C4-C3-N2	-0.1(8)
		N1-C5-S1	137.8(5)	C2-N2-C3-C4	176.9(8)
		C7-C6-C11	118.4(7)	C5-N2-C2-C1	0.5(9)
		C11-C6-C1	120.2(6)	C5-N2-C2-N3	-178.7(6)
		C11-C10-C9	120.4(7)	S2-N3-C2-N2	94.0(7)
		C9-C8-C7	119.5(7)	O2-S2-C12-C13	157.9(6)
		C22-N4-C21	104.9(6)	O1-S2-C12-C17	-161.0(6)

C21-N4-Cu1	124.9(5)	N3-S2-C12-C17	84.0(6)
N4-C22-S3	137.6(6)	S2-C12-C17-C16	-174.9(6)
C19-C18-C23	129.0(7)	C17-C16-C15-C14	-1.3(12)
C23-C18-S3	119.6(5)	C16-C15-C14-C13	1.1(12)
C18-C19-N6	130.6(7)	C17-C12-C13-C14	1.0(11)
C21-C20-N5	106.6(6)	C15-C14-C13-C12	-0.9(11)
C19-N6-S4	119.7(5)	N3-C2-C1-C6	-2.7(14)
C30-C29-S4	119.9(6)	N3-C2-C1-S1	178.8(6)
C33-C34-C29	118.9(7)	C5-S1-C1-C6	-178.7(6)
C31-C32-C33	121.4(8)	Cu1-N1-C5-N2	-164.1(5)
C33-C32-Cl4	119.6(7)	Cu1-N1-C5-S1	19.0(11)
C31-C30-C29	118.9(7)	C2-N2-C5-N1	-178.2(6)
C28-C23-C18	120.7(7)	C2-N2-C5-S1	-0.4(7)
C27-C28-C23	119.3(8)	C1-S1-C5-N2	0.2(5)
C27-C26-C25	119.6(8)	S1-C1-C6-C7	-40.8(9)
C25-C24-C23	120.1(7)	S1-C1-C6-C11	138.6(6)

C2-N2-C5-S1	-0.4(7)
C1-S1-C5-N2	0.2(5)
S1-C1-C6-C7	-40.8(9)
S1-C1-C6-C11	138.6(6)
C1-C6-C11-C10	-179.0(7)
C11-C10-C9-C8	-0.6(12)
C9-C8-C7-C6	-0.1(11)
C1-C6-C7-C8	178.9(7)
Cl2-Cu1-N4-C22	28.2(6)
N1-Cu1-N4-C21	86.2(7)
Cl1-Cu1-N4-C21	-25.5(6)
Cu1-N4-C22-N5	171.7(5)
Cu1-N4-C22-S3	-9.0(12)
C19-N5-C22-N4	-179.0(6)
C19-N5-C22-S3	1.6(8)
C18-S3-C22-N5	-2.2(6)
C22-S3-C18-C23	-178.2(6)
S3-C18-C19-N5	-2.0(8)
S3-C18-C19-N6	-175.6(6)
C20-N5-C19-C18	-178.4(8)
C20-N5-C19-N6	-3.8(12)
C19-N5-C20-C21	178.3(8)

-0.6(8)
84.5(9)
28.1(6)
-87.6(6)
-152.0(6)
160.4(6)
-84.8(6)
178.7(6)
-1.6(12)
1.1(12)
-0.7(11)
-179.2(6)
-142.4(6)
40.9(9)
-177.0(7)
0.5(14)
-0.6(13)
177.5(7)

Таблица 3.28. Кристаллографические данные, детали измерений и уточнения структуры для соединения Р1

Empirical formula	$C_{21}H_{18}N_3N_8O_4S_2$ ($C_{21}H_{14}N_3N_8O_2S_2$, $2H_2O_3$)		
	$e_{2111}e_{131}e_{100}e_{202}$		
Formula weight / g·mol ⁻¹	463.49		
Crystal system	monoclinic		
Space group	P2 ₁ /c		
<i>a</i> / Å	23.282(2)		
b / Å	11.8947(12)		
<i>c</i> / Å	7.4181(8)		
α, β, γ / °	90, 95.037(3), 90		
Volume / $Å^3$	2046.4(4)		
Ζ	4		
Density (calculated) / $g \cdot cm^{-3}$	1.504		

Absorptions coefficient / mm ⁻¹	0.317	
Radiation $(\lambda / \text{Å})$	ΜοΚα (0.71073)	
Temperature / K	100(2)	
2Θ range / °	2.45 - 26.36	
Crystal size / mm	$0.32 \times 0.30 \times 0.01$	
Crystal habit	colorless, plate	
F(000)	960	
Index ranges	-28<=h<=29, -14<=k<=13, -9<=l<=8	
Reflections collected	27965	
Independent reflections	3972 [R(int) = 0.0859]	
Number of ref. parameters	284	
$R_1 / wR_2 [I > 2\sigma(I)]$	0.0618 / 0.1242	
R_1 / wR_2 (all data)	0.1050 / 0.1380	
Goodness-of-fit on F ²	1.104	
Completeness [%]	94.8	
Largest diff. peak and hole / $e \cdot \text{Å}^{-3}$	0.459/ -0.586	
Waight ashama	$w=1/[\sigma^2(F_o^2)+(0.0399P)^2+5.0687P]$	
weight scheme	where $P = (F_o^2 + 2F_c^2)/3$	

Таблица 3.29. Селективные длины связей, углы при связях и торсионные углы для соединения Р1

Bond	l, Å	Angle	φ, °	Torsion angle	θ, °
S2-O1	1.455(3)	O1-S2-O2	116.26(14)	O1-S2-O2-Na1	6.60(17)
S2-N3	1.573(3)	O2-S2-N3	105.14(13)	C12-S2-O2-Na1	-109.57(16)
S1-C5	1.722(3)	O2-S2-C12	105.77(12)	O1-S2-N3-C2	-36.3(2)
O2-Na1	2.296(3)	O1-S2-Na1	83.36(9)	C12-S2-N3-C2	81.4(2)
N3-C2	1.398(3)	N3-S2-Na1	126.35(8)	Na1-S2-N3-C2	-137.06(18)
N2-C5	1.387(3)	S2-O2-Na1	126.41(15)	C15-C14-C13-C12	-0.1(5)
N2-C2	1.402(4)	C5-N2-C3	106.1(2)	C14-C13-C12-S2	-175.0(3)
N1-C4	1.404(4)	C3-N2-C2	138.6(2)	O2-S2-C12-C17	158.2(3)
C15-C14	1.384(4)	C16-C15-C14	120.0(3)	O1-S2-C12-C13	-149.4(3)
C14-C13	1.384(4)	C14-C13-C12	118.8(3)	N3-S2-C12-C13	86.7(3)

C13-C12	1.398(4)	C17-C12-S2	119.4(2)	Na1-S2-C12-C13	-60.1(3)
C12-C17	1.386(4)	C1-C2-N3	129.9(3)	C3-N2-C2-C1	178.6(4)
C1-C6	1.456(4)	N3-C2-N2	118.1(2)	C3-N2-C2-N3	-5.6(6)
C6-C11	1.407(3)	C2-C1-S1	111.6(2)	N2-C2-C1-C6	-179.9(3)
C3-C4	1.423(4)	C7-C6-C11	117.0(3)	N2-C2-C1-S1	1.2(4)
C17-C16	1.397(4)	C11-C6-C1	120.7(3)	C5-S1-C1-C6	178.8(3)
Na1-O1W	2.326(2)	C7-C8-C9	121.5(3)	S1-C1-C6-C7	150.1(3)
S2-O2	1.4727(18)	N2-C3-C21	133.7(3)	S1-C1-C6-C11	-28.6(4)
S2-C12	1.775(3)	C21-C3-C4	122.1(3)	C1-C6-C7-C8	178.9(3)
S2-Na1	3.3841(14)	C21-C20-C19	122.3(3)	C7-C8-C9-C10	-1.3(5)
S1-C1	1.789(3)	C19-C18-C4	118.6(3)	C2-N2-C3-C21	2.8(7)
N2-C3	1.397(4)	N1-C4-C3	111.5(3)	C2-N2-C3-C4	-175.6(4)
N1-C5	1.317(4)	N1-C5-N2	115.1(3)	C4-C3-C21-C20	-1.4(5)
C15-C16	1.373(5)	N2-C5-S1	110.4(2)	C21-C20-C19-C18	-2.6(5)
C2-C1	1.352(4)	C9-C10-C11	120.9(3)	C5-N1-C4-C18	-179.9(4)
C6-C7	1.409(4)	C15-C16-C17	120.4(3)	C19-C18-C4-N1	-179.0(3)
C7-C8	1.370(4)	O2-Na1-O1W	92.81(10)	N2-C3-C4-N1	-2.0(4)
C8-C9	1.394(4)	O2-Na1-S2	20.50(6)	N2-C3-C4-C18	178.6(3)
C9-C10	1.397(4)	O1W-Na1-S2	112.51(8)	C4-N1-C5-N2	0.9(4)
C3-C21	1.401(4)	O1-S2-N3	115.10(13)	C3-N2-C5-N1	-2.2(4)
C21-C20	1.360(5)	O1-S2-C12	105.09(14)	C3-N2-C5-S1	179.2(2)
C20-C19	1.410(4)	N3-S2-C12	108.98(15)	C1-S1-C5-N1	-175.9(4)
C19-C18	1.394(4)	O2-S2-Na1	33.09(10)	C7-C6-C11-C10	0.9(5)
C18-C4	1.393(5)	C12-S2-Na1	113.81(9)	C8-C9-C10-C11	-0.1(5)
C11-C10	1.382(4)	C5-S1-C1	90.74(14)	C13-C12-C17-C16	-1.2(5)
Na1-O2W	2.297(3)	C2-N3-S2	118.2(2)	C14-C15-C16-C17	-0.2(5)
		C5-N2-C2	115.3(2)	S2-O2-Na1-O2W	-57.54(15)
		C5-N1-C4	103.1(2)	S2-O2-Na1-O1W	-164.41(13)
		C15-C14-C13	120.9(3)	O1-S2-Na1-O2	-174.05(16)
		C17-C12-C13	120.7(3)	C12-S2-Na1-O2	82.36(18)
		C13-C12-S2	119.8(2)	O1-S2-Na1-O2W	-47.37(10)
		C1-C2-N2	111.9(2)	N3-S2-Na1-O2W	69.03(15)
		C2-C1-C6	131.2(3)	O2-S2-Na1-O1W	16.89(14)
		C6-C1-S1	117.1(2)	C12-S2-Na1-O1W	99.25(15)

C7-C6-C1	122.3(3)	N3-S2-O2-Na1	135.18(14)
C8-C7-C6	121.3(3)	O2-S2-N3-C2	-165.6(2)
C8-C9-C10	117.9(3)	C16-C15-C14-C13	-0.2(5)
N2-C3-C4	104.3(2)	C14-C13-C12-C17	0.8(5)
C20-C21-C3	117.2(3)	O1-S2-C12-C17	34.7(3)
C18-C19-C20	120.6(3)	N3-S2-C12-C17	-89.2(3)
N1-C4-C18	129.3(3)	Na1-S2-C12-C17	124.0(2)
C18-C4-C3	119.2(3)	O2-S2-C12-C13	-25.9(3)
N1-C5-S1	134.5(2)	S2-N3-C2-C1	-93.6(4)
C10-C11-C6	121.3(3)	S2-N3-C2-N2	91.3(3)
C12-C17-C16	119.2(3)	C5-N2-C2-C1	0.7(4)
O2-Na1-O2W	109.74(9)	C5-N2-C2-N3	176.5(3)
O2W-Na1-	104.84(9)	N3-C2-C1-C6	4.9(6)
O1W			
O2W-Na1-S2	98.02(7)	N3-C2-C1-S1	-174.1(3)
		C5-S1-C1-C2	-2.1(3)
		C2-C1-C6-C7	-28.8(6)
		C2-C1-C6-C11	152.5(4)
		C11-C6-C7-C8	-2.3(5)
		C6-C7-C8-C9	2.6(5)
		C5-N2-C3-C21	-179.2(4)
		C5-N2-C3-C4	2.4(3)
		N2-C3-C21-C20	-179.6(4)
		C3-C21-C20-C19	2.7(5)
		C20-C19-C18-C4	1.0(5)
		C5-N1-C4-C3	0.8(4)
		C19-C18-C4-C3	0.3(5)
		C21-C3-C4-N1	179.3(3)
		C21-C3-C4-C18	-0.1(5)
		C4-N1-C5-S1	179.0(3)
		C2-N2-C5-N1	176.4(3)
		C2-N2-C5-S1	-2.2(3)
		C1-S1-C5-N2	2.4(2)
		C1-C6-C11-C10	179.7(3)

C6-C11-C10-C9	0.3(5)
S2-C12-C17-C16	174.6(3)
C12-C17-C16-C15	0.9(5)
N3-S2-Na1-O2	-57.65(18)
O2-S2-Na1-O2W	126.68(15)
C12-S2-Na1-O2W	-150.97(14)
O1-S2-Na1-O1W	-157.15(10)
N3-S2-Na1-O1W	-40.75(15)

Таблица 3.30. Кристаллографические данные, детали измерений и уточнения структуры для соединения Р2

Empirical formula	C ₂₃ H ₁₇ N ₃ O ₂ S ₂ ClK
Formula weight / g·mol ⁻¹	506.07
Crystal system	triclinic
Space group	P -1
<i>a</i> / Å	8.9004(16)
b / Å	10.0819(19)
c / Å	13.813(2)
α, β, γ / °	111.232(5), 103.264(5), 92.290(5)
Volume / Å ³	1114.1(3)
Ζ	2
Density (calculated) / $g \cdot cm^{-3}$	1.509
Absorptions coefficient / mm ⁻¹	0.573
Radiation $(\lambda / \text{\AA})$	ΜοΚα (0.71073)
Temperature / K	100(2)
2Θ range / °	2.37 - 30.15
Crystal size / mm	$0.48\times0.45\times0.14$
Crystal habit	colorless, prism
F(000)	520
Index ranges	-12<=h<=12, -14<=k<=14, -19<=l<=19
Reflections collected	29109
Independent reflections	4866 [R(int) = 0.0611]

Number of ref. parameters	289
$R_1 / wR_2 \ [I > 2\sigma(I)]$	0.0797 / 0.1955
R_1 / wR_2 (all data)	0.0913 / 0.2116
Goodness-of-fit on F ²	1.070
Completeness [%]	99.8
Largest diff. peak and hole / $e \cdot Å^{-3}$	1.161/ -1.419
Weight scheme	w=1/[$\sigma^{2}(F_{o}^{2})+(0.0911P)^{2}+4.5712P$] where P=($F_{o}^{2}+2F_{c}^{2}$)/3

Таблица 3.31. Селективные длины связей, углы при связях и торсионные углы для соединения Р2

Bond	l, Å	Angle	φ, °	Torsion angle	θ, °
Cl1-C15	1.729(4)	C5-S1-C1	89.86(18)	C5-S1-K1-N1	-5.84(16)
S1-C1	1.761(4)	C1-S1-K1	154.71(13)	C5-S1-K1-N3	-86.89(16)
S2-O1	1.420(3)	O1-S2-N3	105.01(17)	C1-S1-K1-C5	-47.9(3)
S2-N3	1.643(3)	O1-S2-C12	109.07(17)	O2-S2-N3-C2	-36.6(3)
K1-N1	2.985(4)	N3-S2-C12	106.06(16)	O1-S2-N3-K1	36.73(18)
K1-C5	3.417(4)	N1-K1-C5	22.64(10)	C12-S2-N3-K1	-78.68(17)
N3-C2	1.386(4)	N1-K1-S1	50.74(7)	C16-C17-C12-C13	-0.7(6)
N2-C5	1.346(5)	C5-K1-S1	28.38(7)	O1-S2-C12-C17	150.3(3)
N2-C2	1.411(5)	C2-N3-K1	127.1(2)	N3-S2-C12-C17	-97.0(3)
C22-C21	1.454(10)	C5-N2-C3	109.2(3)	O2-S2-C12-C13	-167.2(3)
C16-C15	1.377(5)	C3-N2-C2	136.9(3)	S2-N3-C2-C1	-93.6(5)
C2-C1	1.369(5)	C15-C16-C17	119.5(3)	S2-N3-C2-N2	89.1(4)
C4-C18	1.451(6)	C17-C12-C13	121.4(3)	C5-N2-C2-C1	-0.3(4)
C18-C23	1.396(7)	C13-C12-S2	118.6(3)	C5-N2-C2-N3	177.5(3)
C21-C20	1.351(11)	C1-C2-N2	111.2(3)	C5-N2-C3-C4	0.0(4)
C5-N1	1.326(5)	C4-C3-N2	106.4(3)	N2-C3-C4-N1	0.7(4)
C6-C7	1.387(6)	C3-C4-C18	128.9(4)	C3-C4-C18-C19	-179.7(4)
C7-C8	1.396(6)	C19-C18-C23	121.3(5)	C3-C4-C18-C23	1.8(6)
C8-C9	1.378(7)	C23-C18-C4	118.9(4)	C21-C22-C23-C18	-0.1(7)
C9-C10	1.369(8)	C20-C21-C22	120.1(5)	C4-C18-C23-C22	179.1(4)

C10-C11	1.378(7)	N1-C5-S1	137.5(3)	C3-N2-C5-N1	-0.7(4)
C13-C14	1.391(5)	N1-C5-K1	60.1(2)	C3-N2-C5-S1	176.3(3)
C14-C15	1.386(5)	S1-C5-K1	79.04(13)	C3-N2-C5-K1	55.7(8)
S1-C5	1.703(4)	C2-C1-S1	111.9(3)	C1-S1-C5-N1	176.7(5)
S1-K1	3.5163(16)	C7-C6-C11	118.9(4)	C1-S1-C5-N2	0.9(3)
S2-O2	1.437(3)	C11-C6-C1	120.0(4)	C1-S1-C5-K1	161.52(13)
S2-C12	1.762(4)	C9-C8-C7	120.7(5)	S1-K1-C5-N1	-168.2(3)
K1-N3	3.079(3)	C9-C10-C11	121.3(4)	N1-K1-C5-N2	-65.3(7)
N2-C3	1.373(5)	C5-N1-C4	107.9(3)	S1-K1-C5-N2	126.5(8)
C22-C23	1.392(7)	C4-N1-K1	146.4(3)	N1-K1-C5-S1	168.2(3)
C16-C17	1.386(5)	C21-C20-C19	121.6(6)	N2-C2-C1-C6	178.3(4)
C17-C12	1.385(5)	C15-C14-C13	119.0(4)	N2-C2-C1-S1	0.9(4)
C12-C13	1.389(5)	C16-C15-Cl1	118.9(3)	K1-S1-C1-C2	44.0(5)
C3-C4	1.368(5)	C5-S1-K1	72.58(13)	K1-S1-C1-C6	-133.6(3)
C4-N1	1.397(6)	O1-S2-O2	121.09(18)	S1-C1-C6-C7	141.6(4)
C18-C19	1.395(7)	O2-S2-N3	106.80(17)	S1-C1-C6-C11	-37.6(5)
C1-C6	1.465(6)	O2-S2-C12	107.85(17)	C1-C6-C7-C8	178.6(4)
C6-C11	1.397(6)	N1-K1-N3	99.88(9)	C7-C8-C9-C10	-1.6(8)
C19-C20	1.392(8)	N3-K1-C5	111.44(9)	C9-C10-C11-C6	1.9(8)
		N3-K1-S1	116.22(7)	C1-C6-C11-C10	179.0(5)
		C2-N3-S2	119.6(3)	S1-C5-N1-C4	-174.8(4)
		S2-N3-K1	108.38(14)	N2-C5-N1-K1	158.7(3)
		C5-N2-C2	113.7(3)	C3-C4-N1-C5	-1.2(4)
		C23-C22-C21	118.3(7)	C3-C4-N1-K1	-137.9(4)
		C12-C17-C16	119.2(3)	N3-K1-N1-C5	123.1(2)
		C17-C12-S2	119.9(3)	C5-K1-N1-C4	138.9(6)
		C1-C2-N3	132.0(4)	C4-C18-C19-C20	-179.1(4)
		N3-C2-N2	116.8(3)	C18-C19-C20-C21	0.0(9)
		C3-C4-N1	107.5(4)	S2-C12-C13-C14	-175.5(3)
		N1-C4-C18	123.6(4)	C17-C16-C15-C14	0.7(6)
		C19-C18-C4	119.8(5)	C13-C14-C15-C16	-1.2(6)
		C22-C23-C18	119.8(5)	C1-S1-K1-N1	-53.7(3)
		N1-C5-N2	109.0(4)	C1-S1-K1-N3	-134.8(3)
		N2-C5-S1	113.4(3)	O1-S2-N3-C2	-166.4(3)
N2-C5-K1	157.8(3)	C12-S2-N3-C2	78.2(3)		
-------------	----------	-----------------	------------		
C2-C1-C6	129.4(4)	O2-S2-N3-K1	166.48(14)		
C6-C1-S1	118.7(3)	C15-C16-C17-C12	0.3(6)		
C7-C6-C1	121.1(3)	C16-C17-C12-S2	174.9(3)		
C6-C7-C8	119.8(4)	O2-S2-C12-C17	17.1(4)		
C10-C9-C8	119.2(5)	O1-S2-C12-C13	-33.9(4)		
C10-C11-C6	120.1(5)	N3-S2-C12-C13	78.7(3)		
C5-N1-K1	97.3(2)	K1-N3-C2-C1	58.6(5)		
C20-C19-C18	118.9(7)	K1-N3-C2-N2	-118.8(3)		
C12-C13-C14	119.2(4)	C3-N2-C2-C1	-175.9(4)		
C16-C15-C14	121.7(3)	C3-N2-C2-N3	1.9(6)		
C14-C15-Cl1	119.4(3)	C2-N2-C3-C4	175.7(4)		
		N2-C3-C4-C18	-177.8(4)		
		N1-C4-C18-C19	2.0(6)		
		N1-C4-C18-C23	-176.4(4)		
		C19-C18-C23-C22	0.7(7)		
		C23-C22-C21-C20	-0.6(8)		
		C2-N2-C5-N1	-177.6(3)		
		C2-N2-C5-S1	-0.5(4)		
		C2-N2-C5-K1	-121.2(7)		
		K1-S1-C5-N1	15.2(4)		
		K1-S1-C5-N2	-160.7(3)		
		N3-K1-C5-N1	-62.4(2)		
		N3-K1-C5-N2	-127.8(7)		
		N3-K1-C5-S1	105.76(14)		
		N3-C2-C1-C6	0.9(7)		

N3-C2-C1-S1

C5-S1-C1-C2

C5-S1-C1-C6

C2-C1-C6-C7

C2-C1-C6-C11

C11-C6-C7-C8

C6-C7-C8-C9

C8-C9-C10-C11

-176.5(3)

-178.7(3)

-35.6(6)

145.2(4)

-2.3(7)

3.2(8)

-0.9(9)

-1.0(3)

C7-C6-C11-C10	-0.2(7)
N2-C5-N1-C4	1.2(4)
K1-C5-N1-C4	-157.5(3)
S1-C5-N1-K1	-17.3(5)
C18-C4-N1-C5	177.4(4)
C18-C4-N1-K1	40.7(7)
S1-K1-N1-C5	7.2(2)
N3-K1-N1-C4	-98.0(5)
S1-K1-N1-C4	146.1(5)
C23-C18-C19-C20	-0.6(7)
C22-C21-C20-C19	0.6(9)
C17-C12-C13-C14	0.1(6)
C12-C13-C14-C15	0.8(6)
C17-C16-C15-Cl1	179.6(3)
C13-C14-C15-Cl1	179.9(3)

Таблица 3.32. Кристаллографические данные, детали измерений и уточнения структуры для соединения Р3

Empirical formula	CarHurNaOaSaClK
Linpirear formala	C2311151V3O2D2CIK
Formula weight / g·mol ⁻¹	504.05
Crystal system	triclinic
Space group	P -1
<i>a</i> / Å	8.4207(4)
b / Å	10.4145(5)
<i>c</i> / Å	13.6140(7)
$\alpha, \beta, \gamma / °$	76.201(2), 75.846(2), 83.950(2)
Volume / Å ³	1122.85(10)
Ζ	2
Density (calculated) / $g \cdot cm^{-3}$	1.491
Absorptions coefficient / mm ⁻¹	0.568
Radiation $(\lambda / \text{\AA})$	ΜοΚα (0.71073)
Temperature / K	100(2)

2Θ range / °	2.02 - 30.08
Crystal size / mm	$0.32\times0.26\times0.18$
Crystal habit	Colorless, prism
F(000)	516
Index ranges	-11<=h<=11, -14<=k<=14, -19<=l<=19
Reflections collected	58169
Independent reflections	6570 [R(int) = 0.0294]
Number of ref. parameters	298
$R_1 / wR_2 [I > 2\sigma(I)]$	0.0589 / 0.1731
R_1 / wR_2 (all data)	0.0656 / 0.1807
Goodness-of-fit on F ²	1.059
Completeness [%]	99.7
Largest diff. peak and hole / $e \cdot A^{-3}$	3.651/ -1.240
Weight scheme	w=1/[$\sigma^{2}(F_{o}^{2})+(0.0970P)^{2}+3.0320P$] where P=($F_{o}^{2}+2F_{c}^{2}$)/3

Таблица 3.33. Селективные длины связей, углы при связях и торсионные углы для соединения Р3

Bond	<i>l</i> , Å	Angle	φ, °	Torsion angle	θ, °
Cl1-C15	1.731(3)	O1-S2-O2	121.35(12)	O1-S2-N3-C2	159.5(2)
S2-O2	1.4390(19)	O2-S2-N3	107.71(11)	C12-S2-N3-C2	-86.3(2)
S2-C12	1.763(3)	O2-S2-C12	107.50(12)	O2-S2-N3-K2	-149.09(12)
S1-C1	1.763(2)	C5-S1-C1	90.02(12)	C16-C15-C14-C13	-0.6(4)
N3-C2	1.393(3)	C1-S1-K2	148.69(9)	C15-C14-C13-C12	0.0(4)
N2-C5	1.349(3)	C2-N3-K2	118.45(15)	C14-C13-C12-S2	179.3(2)
N2-C2	1.403(3)	C5-N2-C3	109.6(2)	O2-S2-C12-C13	148.0(2)
N1-C4	1.404(3)	C3-N2-C2	135.8(2)	O1-S2-C12-C17	-165.6(2)
C15-C14	1.384(4)	C5-N1-K3	126.70(16)	N3-S2-C12-C17	81.9(2)
C14-C13	1.390(4)	C14-C15-C16	121.9(2)	K2-N3-C2-C1	-86.5(3)
C13-C12	1.387(3)	C16-C15-Cl1	119.2(2)	K2-N3-C2-N2	93.2(2)
C12-C17	1.393(3)	C12-C13-C14	119.5(2)	C3-N2-C2-C1	175.0(3)
C3-C4	1.368(3)	C13-C12-S2	118.79(19)	C3-N2-C2-N3	-4.9(4)

C4-C18	1.464(3)	C1-C2-N3	129.8(2)	C2-N2-C3-C4	-176.3(3)
C18-C19	1.401(3)	N3-C2-N2	118.7(2)	N2-C3-C4-C18	177.9(2)
C1-C6	1.470(3)	C3-C4-N1	108.1(2)	K3-N1-C4-C3	161.07(16)
C6-C7	1.398(3)	N1-C4-C18	123.5(2)	K3-N1-C4-C18	-17.6(3)
C23-C22	1.392(4)	C23-C18-C4	121.7(2)	N1-C4-C18-C23	-11.7(4)
C17-C16	1.390(4)	C20-C19-C18	120.1(2)	N1-C4-C18-C19	167.4(2)
K2-S1	3.5712(13)	C22-C21-C20	119.6(2)	C4-C18-C19-C20	-179.4(2)
S2-O1	1.4332(19)	N1-C5-N2	108.8(2)	C19-C20-C21-C22	-0.2(4)
S2-N3	1.631(2)	N2-C5-S1	112.18(18)	C4-N1-C5-N2	-1.5(3)
S1-C5	1.715(3)	C2-C1-S1	111.80(18)	C4-N1-C5-S1	173.2(2)
S1-K2	3.5712(13)	C11-C6-C7	119.1(2)	C3-N2-C5-N1	1.1(3)
N3-K2	2.961(2)	C7-C6-C1	120.6(2)	C3-N2-C5-S1	-175.13(17)
N2-C3	1.384(3)	C7-C8-C9	120.6(3)	C1-S1-C5-N1	-176.2(3)
N1-C5	1.337(3)	C9-C10-C11	120.1(3)	C1-S1-C5-N2	-1.69(19)
N1-K3	3.111(2)	C18-C23-C22	120.0(2)	N3-C2-C1-C6	-1.4(4)
C15-C16	1.383(4)	C21-C22-C23	120.4(2)	N3-C2-C1-S1	179.5(2)
C2-C1	1.360(3)	C15-C16-C17	118.8(2)	C5-S1-C1-C2	1.1(2)
C18-C23	1.396(3)	N3-K2-S1	87.96(5)	C5-S1-C1-C6	-178.1(2)
C19-C20	1.389(4)	O1-S2-N3	105.29(11)	C2-C1-C6-C11	-141.7(3)
C20-C21	1.391(4)	O1-S2-C12	107.79(11)	C2-C1-C6-C7	37.4(4)
C21-C22	1.391(4)	N3-S2-C12	106.32(12)	C11-C6-C7-C8	1.0(4)
C6-C11	1.396(4)	C5-S1-K2	98.08(8)	C6-C7-C8-C9	-0.6(4)
C7-C8	1.388(4)	C2-N3-S2	121.59(17)	C8-C9-C10-C11	0.7(5)
C8-C9	1.388(4)	S2-N3-K2	119.93(10)	C1-C6-C11-C10	178.5(3)
C9-C10	1.388(4)	C5-N2-C2	114.5(2)	C19-C18-C23-C22	0.3(4)
C10-C11	1.388(4)	C5-N1-C4	107.6(2)	С19-С18-С23-К3	-149.98(19)
C23-K3	3.460(3)	C4-N1-K3	122.06(15)	C20-C21-C22-C23	0.1(4)
K2-K2	2.884(3)	C14-C15-Cl1	118.9(2)	C18-C23-C22-C21	-0.1(4)
K3-K3	2.844(3)	C15-C14-C13	119.1(2)	C13-C12-C17-C16	-0.4(4)
		C13-C12-C17	120.9(2)	C14-C15-C16-C17	0.7(4)
		C17-C12-S2	120.35(19)	C12-C17-C16-C15	-0.1(4)
		C1-C2-N2	111.5(2)	S2-N3-K2-K2	-154.13(12)
		C4-C3-N2	105.9(2)	S2-N3-K2-S1	-11.80(12)
		C3-C4-C18	128.3(2)	C4-N1-K3-K3	-10.0(2)

C23-C18-C19	119.5(2)	O2-S2-N3-C2	28.6(2)
C19-C18-C4	118.8(2)	O1-S2-N3-K2	-18.28(15)
C19-C20-C21	120.4(2)	C12-S2-N3-K2	95.93(13)
N1-C5-S1	138.88(19)	Cl1-C15-C14-C13	178.2(2)
C2-C1-C6	128.3(2)	C14-C13-C12-C17	0.5(4)
C6-C1-S1	119.88(18)	O1-S2-C12-C13	15.6(2)
C11-C6-C1	120.4(2)	N3-S2-C12-C13	-96.9(2)
C8-C7-C6	120.0(3)	O2-S2-C12-C17	-33.2(2)
C10-C9-C8	119.7(3)	S2-N3-C2-C1	95.7(3)
C6-C11-C10	120.6(3)	S2-N3-C2-N2	-84.5(3)
C16-C17-C12	119.7(2)	C5-N2-C2-C1	-1.0(3)
K2-K2-N3	103.61(6)	C5-N2-C2-N3	179.2(2)
K2-K2-S1	141.00(6)	C5-N2-C3-C4	-0.2(3)
K3-K3-N1	123.94(7)		

N2-C3-C4-N1	-0.7(3)
C5-N1-C4-C3	1.3(3)
C5-N1-C4-C18	-177.3(2)
C3-C4-C18-C23	169.9(3)
C3-C4-C18-C19	-11.1(4)
C23-C18-C19-C20	-0.4(4)
C18-C19-C20-C21	0.4(4)
K3-N1-C5-N2	-159.99(15)
K3-N1-C5-S1	14.7(4)
C2-N2-C5-N1	178.1(2)
C2-N2-C5-S1	1.9(3)
K2-S1-C5-N1	-26.6(3)
K2-S1-C5-N2	147.96(17)
N2-C2-C1-C6	178.8(2)
N2-C2-C1-S1	-0.3(3)
K2-S1-C1-C2	-104.6(2)
K2-S1-C1-C6	76.2(3)
S1-C1-C6-C11	37.4(3)
S1-C1-C6-C7	-143.5(2)
C1-C6-C7-C8	-178.1(3)

C7-C8-C9-C10	-0.3(5)
C7-C6-C11-C10	-0.6(4)
C9-C10-C11-C6	-0.2(5)
C4-C18-C23-C22	179.3(2)
С4-С18-С23-К3	29.0(3)
S2-C12-C17-C16	-179.2(2)
Cl1-C15-C16-C17	-178.1(2)
C2-N3-K2-K2	28.06(19)
C2-N3-K2-S1	170.39(18)
C5-N1-K3-K3	145.67(18)

3.4. Квантово-химические рачеты

Расчёт проводился с помощью пакета программ GAUSSIAN 09 [59], с использованием гибридного функционала B3LYP и базисного набора 6-311+G(d). Анализ топологических данных проводился методом QTAIM [60] с помощью программы AIMALL [61], DORI-анализ проводился в рамках программы Multiwfn [62]. Стартовая геометрия для оптимизации структурных параметров молекул взята из данных PCA.

выводы

- Проведено рентгеноструктурное исследование и конформационный анализ новых арилсульфониламинозамещенных производных имидазо[2,1-b]тиазола, тиазоло[3,2а]бензимидазола, имидазо[1,2-а]пиридина, их металлокомплексов и координационных полимеров. Исследованы функции распределения электронной плотности, которые сопоставлены с теоретическими данными, полученными в рамках топологической теории Р. Бейдера «Атомы в молекулах».
- Выявлены внутримолекулярные невалентные взаимодействия типа π- и t-стэкинга. Установлены закономерности формирования этих взаимодействий: пространственное расположение связей, их количество и вид (тетрельные, халькогеновые, пниктогеновые).
- На основе рассчитанных значений плотности потенциальной энергии V, оценена энергия π- и t-стэкинга в замещенных сульфонамидах. Энергия взаимодействия находится в пределах 0.5-1.2 ккал/моль. Показано что, несмотря на малую величину каждого из таких взаимодействий, количество таких взаимодействий является решающим фактором, определяющим пространственное строение сульфонамидов.
- 4. Установлено, что тетрельные взаимодействия примерно в 2 раза слабее по энергии, по сравнению с халькогеновыми и пниктогеновыми взаимодействиями. Установлено, что при благоприятном пространственном расположении, один и тот же атом углерода способен одновременно участвовать как в тетрельном, так и в пниктогеновом взаимодействии, при этом энергия тетрельного взаимодействия увеличивается.
- Приведены первые примеры использования сульфонамидозамещенных имидазо[2,1b]тиазолов в качестве лигандов. Установлено, что при образовании металлокомплексов в лигандах сохраняется внутримолекулярный π-стэкинг. На примере металлокомплекса бис[4-хлор-*N*-(3,6-дифенилимидазо[2,1-b][1,3]тиазол-2-ил)бензолсульфонамида] хлорида меди (II) продемонстрирована способность сульфонамидов формировать дополнительные π-сэндвичи.
- 6. Показано, что в координационных полимерах независимо от координирующего металла сохраняется внутримолекулярное π-π-взаимодействие, присущее исходным «лигандам», а также реализуется межмолекулярный π-стэкинг. Установлено, что для полимера [N-(2-фенил[1,3]тиазоло[3,2-а]бензимидазол-3-ил)бензолсульфонамидата-κ²N,O] натрия наличие внутримолекулярных и межмолекулярных π- и t-стэкинг-взаимодействий формирует отдельные слои, состоящие только из ароматических фрагментов смежных лент.

ПРИЛОЖЕНИЕ

Таблица П.1.1. Исследуемые соединения.

ПЕРСПЕКТИВНЫЕ ЛИГАНДЫ ПЕРВОГО РЯДА				
L1	L3			
4-Хлор- <i>N</i> -(2-фенил[1,3]тиазоло[3,2-	4-Метил- <i>N</i> -(2-фенил[1,3]тиазоло[3,2-	<i>N</i> -(2-Фенил[1,3]тиазоло[3,2-		
а]бензимидазол-3-ил)бензолсульфонамид	а]бензимидазол-3-ил)бензолсульфонамид	а]бензимидазол-3-ил)бензолсульфонамид		

ПЕРСПЕКТИВНЫЕ ЛИГАНДЫ ТРЕТЬЕГО РЯДА				
L7	L8	L9		
4-Хлор- <i>N</i> -(2,5-дифенилимидазо[2,1-	4-Метил- <i>N</i> -(2,5-дифенилимидазо[2,1-	<i>N</i> -(2,5-дифенилимидазо[2,1- <i>b</i>][1,3]тиазол-		
рј[1,3]тиазол-3-ил)оензолсульфонамид	рј[1,5]тиазол-5-ил)оензолсульфонамид	э-ил)оензолсульфонамид		

ПЕРСПЕКТИВНЫЕ ЛИГАНДЫ ЧЕТВЕРТОГО РЯДА				
L10	L11	L12		
4-Хлор- <i>N</i> -(2-фенилимидазо[2,1- <i>b</i>][1,3]тиазол-3- ил)бензолсульфонамид	4-Метил- <i>N</i> -(2-фенилимидазо[2,1- <i>b</i>][1,3]тиазол-3-ил)бензолсульфонамид	<i>N</i> -(2-фенилимидазо[2,1- <i>b</i>][1,3]тиазол-3- ил)бензолсульфонамид		

1	5	6
I	Э	0

КООРДИНАЦИОННЫЕ ПОЛИМЕРЫ				
P1	P2	P3		
N3 O1W N2 O2W O2 Na1 O2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N				
[<i>N</i> -(2-фенил[1,3]тиазоло[3,2- <i>а</i>]бензимидазол-3- ил)бензолсульфонамидато-к ² <i>N</i> , <i>O</i>] натрия * 2H ₂ O	[4-Хлор- <i>N</i> -(2,6-дифенилимидазо[2,1- <i>b</i>][1,3]тиазол-3-ил)бензолсульфонамидато- к <i>N</i>] калия	[4-Хлор- <i>N</i> -(2,6- дифенилимидазо[2,1- <i>b</i>][1,3]тиазол-3-ил)бензолсульфонамидато-к <i>N</i>] калия		

СПИСОК ЛИТЕРАТУРЫ

- Hansch C. Comprehensive medicinal chemistry. V. 2. Chapter 7.1 / C. Hansch, P. G. Sammes, J. B. Taylor // Pergamon Press. - Oxford. - 1990.
- Tappea W. Growth-inhibitory effects of sulfonamides at different pH: Dissimilar susceptibility patterns of a soil bacterium and a test bacterium used for antibiotic assays / W. Tappea, Ch. Zarfl, S. Kummer, P. Burauel, H. Vereecken, J. Groeneweg // Chemosphere. 2008. V. 72, P. 836-843.
- Connor E. E. Sulfonamide antibiotics / E.E. Connor // Prim Care Updat 1998 OB/GYNS 5. P. 32-35.
- Kleemann A. Pharmaceutical substances, syntheses, patents, applications / A. Kleemann, J. Engel, B. Kutscher, D. Reichert // 2nd ed. Stuggart Guide. Oxford Press. Thieme. 1999.
- Purushottamachar P. Potent anti-prostate cancer agents derived from a novel androgen receptor down-regulating agent / P. Purushottamachar, A. Khandelwal, T. S. Vasaitis, R. D. Bruno, L. K. Gediya, C. O. Njar Vincent // Bioorg. & Med. Chem. - 2008. - V. 16. - P. 3519-3529.
- 6. Lu Rong-Jian. Design and Synthesis of Human Immunodeficiency Virus Entry Inhibitors: Sulfonamide as an Isostere for the α-Ketoamide Group / Rong-Jian Lu, J. A. Tucker, T. Zinevitch, O. Kirichenko, V. Konoplev, S. Kuznetsova, S. Sviridov, J. Pickens, S. Tandel, E. Brahmachary, Yang Yang, Wang Jian, S. Freel, Sh. Fisher, A. Sullivan, Zhou Jiying, Sh. Stanfield-Oakley, M. Greenberg, D. Bolognesi, B. Bray, B. Koszalka, P. Jeffs, A. Khasanov, Ma You-An, Jeffries Cynthia, Liu Changhui, T. Proskurina, Zhu Tong, A. Chucholowski, Li Rongshi, C. Sexton // J. Med. Chem. - 2007. - P. 6535-6544.
- Wilkinson B. L. Carbonic anhydrase inhibitors: inhibition of isozymes I, II, and IX with triazolelinked O-glycosides of benzene sulfonamides / B. L. Wilkinson, L. F. Bornaghi, T. A. Houston, A. Innocenti, C. Vullo, C. T. Supuran, S. A. Poulsen // J. Med. Chem. - 2007. - V. 50. - P. 1651-1657.
- Almansa C. New water-soluble sulfonylphosphoramidic acid derivatives of the COX-2 selective inhibitor cimicoxib. A novel approach to sulfonamide prodrugs / C. Almansa, J. Bartrolí, J. Belloc, F. L. Cavalcanti, R. Ferrando, L. A. Gómez, I. Ramis, E. Carceller, M. Merlos, J. García-Rafanell // J. Med. Chem. - 2004. - V. 47. - P. 5579-5582.
- Chu W. Isatin sulfonamide analogs containing a Michael addition acceptor: a new class of caspase 3/7 inhibitors / W. Chu, J. Rothfuss, A. d'Avignon, C Zeng. D. Zhou, R.S. Hotchkiss, R. H. Mach // J. Med. Chem. 2007. V. 50. P. 3751-3755.
- Altamura M. Privileged structures: synthesis and structural investigations on tricyclic sulfonamides / M. Altamura, V. Fedi, D. Giannotti, P. Paoli, P. Rossi // New J. Chem. - 2009. -V. 33. - P. 2219-2231.

- Perlovich G. L. Thermodynamic and structural aspects of sulfonamide crystals and solutions / G.
 L. Perlovich, V. V. Tkachev, N. N. Strakhova, V. P. Kazachenko, T. V. Volkova, O. V. Surov, Schaper Klaus-Jürgen, O. A. Raevsky // J. of Pharmaceut. Scien. - 2009. - V. 98. - P. 4738-4755.
- Perlovich G. L. Sulfonamide molecular crystals: thermodynamic and structural aspects / G. L. Perlovich, A. M. Ryzhakov, V. V. Tkachev, L. Kr. Hansen // Cryst. Growth Des. - 2011. - V. 11. - P. 1067-1081.
- Vega-Hissi E. Theoretical studies on sulfanilamide and derivatives with antibacterial activity: conformational and electronic analysis / E. G. Vega-Hissi, M. F. Andrada, G. N. Zamarbide, M. R. Estrada, F. Tomás-Vert // J. of Mol. Model. - 2011. - V. 17. - P. 1317-1323.
- Saenger W. In principles of nucleic acid structure / W. Saenger // Springer-Verlag: New York. -1984. - P. 132.
- Wakelin L. P. G. Polyfunctional dna intercalating agents / L. P. G. Wakelin // Med. Res. Rev. -1986. - V. 6. - P. 275-340.
- Desiraju G. R. From molecular to crystal-structure polynuclear aromatic-hydrocarbons / G. R. Desiraju, A. J. Gavezzotti // Chem. Soc. Chem. Comm. 1989. V. 10. P. 621-623.
- Burley S. K. Weakly polar interactions in proteins / S. K. Burley, G. A. Petsko // Adv. Protein Chem. - 1988. - V. 39. - P. 125-189.
- Hunter C. A. Dabco metalloporphyrin binding ternary complexes, host guest chemistry, and the measurement of pi-pi-interactions / C. A. Hunter, M. N. Meah, J. K. M. Sanders // J. Am. Chem. Soc. - 1990. - V. 112. - P. 5773-5780.
- Abraham R. J. Pi-pi aggregation in metalloporphyrins causative factors / R. J. Abraham, F. Eivazi, H. Pearson, K. M. Smith // J. Chem. Soc. Chem. Comm. 1976. P. 699-701.
- Abraham R. J. Mechanisms of aggregation in metalloporphyrins demonstration of a mechanistic dichotomy / R. J. Abraham, F. Eivazi, H. Pearson, K. M. Smith // J. Chem. Soc. Chem. Comm. - 1976. - P. 698-699.
- 21. Hunter C. A. The nature of π-π-interactions / C. A. Hunter, J. K. M. Sanders // J. Am. Chem. Soc.
 1990. V. 112. P. 5525-5534.
- Langlet J. Interactions between nucleic-acid bases in hydrogen-bonded and stacked configurations the role of the molecular charge-distribution / J. Langlet, P. Claverie, F. Caron, J. C. Boeuve // Int. J. Quantum Chem. 1981. V. 20. P. 299-338.
- Buckingham A. D. Intermolecular interactions: from diatomics to biopolymers / A. D. Buckingham // Wiley. Chichester. - 1978. - P. 3-67.
- Caillet J. Theoretical evaluation of intermolecular interaction energy of a crystal application to analysis of crystal geometry / J. Caillet, P. Claverie // Acta Crystallogr. A. - 1975. - V. 31. - P. 448-461.

- Askew B. Molecular recognition with convergent functional-groups .6. Synthetic and structural studies with a model receptor for nucleic-acid components / B. Askew, P. Ballester, C. Buhr, K. S. Jeong, S. Jones, K. Parris, K. Williams, J. Rebek // J. Am. Chem. Soc. 1989. V. 111. P. 1082-1090.
- Williams K. Molecular recognition with convergent functional-groups.7. Energetics of adenine binding with model receptors / K. Williams, B. Askew, P. Ballester, C. Buhr, K. S. Jeong, S. Jones, J. Rebek // J. Am. Chem. Soc. - 1989. - V. 111. - P. 1090-1094.
- Shepodd T. J. Molecular recognition in aqueous-media donor-acceptor and ion dipole interactions produce tight-binding for highly soluble guests / T. J. Shepodd, M. A. Petti, D. A. Dougherty // J. Am. Chem. Soc. - 1988. - V. - 110. - P. 1983-1985.
- Schneider H. J. Large binding constant differences between aromatic and aliphatic substrates in positively charged cavities indicative of higher-order electric effects / H. J. Schneider, T. Blatter, S. Simova, I. Theis // J. Chem. Soc. Chem. Comm. 1989. V. 9. P. 580-581.
- Hunter C. A. Exciton coupling in porphyrin dimers / C. A. Hunter, J. K. M. Sanders, A. Stone // J. Chem. Phys. - 1989. - V. 133. - P. 395-404.
- Bredas J. L. Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport / J. L. Bredas, J. P. Calbert, D. A. da Silva, J. Cornil // P. Natl. Acad. Sci. USA. - 2002. - V. 99. - P. 5804-5809.
- Desiraju G. R. Hydrogen bridges in crystal engineering: Interactions without borders / G. R. Desiraju // Accounts of Chemical Research. - 2002. - V. 35. - P. 565-573.
- Cavallo G. The Halogen Bond / G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo // Chem. Rev. 2016. V. 116. P. 2478-2601.
- Wang W. Z. Chalcogen Bond: A Sister Noncovalent Bond to Halogen Bond / W. Z. Wang, B. M. Ji, Y. Zhang // J. Phys. Chem. A. 2009. V. 113. P. 8132-8135.
- Zhang Y. The bifurcate chalcogen bond: Some theoretical observations / Y. Zhang, W. Z. Wang
 // J. Mo.l Struc-Theochem. 2009. V. 916. P. 135-138.
- Scheiner S. Detailed comparison of the pnicogen bond with chalcogen, halogen, and hydrogen bonds / S. Scheiner // Int. J. Quantum. Chem. 2013. V. 113. P. 1609-1620.
- Scheiner S. The pnicogen bond: its relation to hydrogen, halogen, and other noncovalent bonds / S. Scheiner // Acc. of Chem. Res. - 2013. - V. 46. - P. 280-288.
- Bauza A. Tetrel-bonding interaction: rediscovered supramolecular force? / A. Bauza, T. J. Mooibroek, A. Frontera // Angew. Chem. Int. Edit. 2013. V. 52. P. 12317-12321.
- Bauza A. Aerogen bonding interaction: a new supramolecular force? / A. Bauza, A. Frontera // Angew. Chem. Int. Edit. - 2015. - V. 54. - P. 7340-7343.

- Bauza A. Pi-Hole aerogen bonding interactions / A. Bauza, A. Frontera // Phys. Chem. Chem. Phys. - 2015. - V. 17. - P. 24748-24753.
- 40. Yao Z. F. Control of pi-pi stacking via crystal engineering in organic conjugated small molecule crystals / Z. F. Yao, J. Y. Wang, J. Pei // Crystal Growth & Design. 2018. V. 18. P. 7-15.
- Chen Z. J. Self-assembled pi-stacks of functional dyes in solution: structural and thermodynamic features / Z. J. Chen, A. Lohr, C. R. Saha-Moller, F. Wurthner // Chem. Soc. Rev. 2009. V. 38. P. 564-584.
- 42. Wurthner F. Dipole-dipole interaction driven self-assembly of merocyanine dyes: from dimers to nanoscale objects and supramolecular materials / F. Wurthner // Acc. of Chem. Res. 2016. V. 49. P. 868-876.
- 43. Dunitz J. D. How molecules stick together in organic crystals: weak intermolecular interactions /
 J. D. Dunitz, A. Gavezzotti // Chem. Soc. Rev. 2009. V. 38. P. 2622-2633.
- Pendas A. M. The nature of the hydrogen bond: A synthesis from the interacting quantum atoms picture / A. M. Pendas, M. A. Blanco, E. Francisco // J. Chem. Phys. 2006. V. 125. P. 184112.
- Spackman M. A. Hirshfeld surface analysis / M. A. Spackman, D. Jayatilaka // Crystengcomm. -2009. - V. 11. - P. 19-32.
- Desiraju G. R. Crystal-structures of polynuclear aromatic-hydrocarbons classification, rationalization and prediction from molecular-structure / G. R. Desiraju, A. Gavezzotti // Acta Crystallogr. B. - 1989. - V. 45. - P. 473-482.
- 47. Багрянская И.Ю. Супрамолекулярная организация и особенности кристаллических упаковок плигетероатомных производных ароматических соединений [текст]: дисс. докт. хим. наук: 02.00.04 / Казань. - 2010. - С.1-264.
- Mei J. G. Integrated materials design of organic semiconductors for field-effect transistors / J. G. Mei, Y. Diao, A. L. Appleton, L. Fang, Z. N. Bao // J. Am. Chem. Soc. - 2013. - V. 135. - P. 6724-6746.
- Rajagopal S. K. S center dot center dot center dot pi, pi-pi, and c-h center dot center dot center dot center dot pi contacts regulate solid state fluorescence in regioisomeric bisthiazolylpyrenes / S. K. Rajagopal, P. S. Salini, M. Hariharan // Cryst. Growth & Design. 2016. V. 16. P. 4567-4573.
- 50. Ebin S. Null exciton splitting in chromophoric greek cross (+) aggregate / S. Ebin, M. P. Abbey,
 B. Alfy, Dr. Mahesh Hariharan // Angew. Chem. Int. Edit. 2018. V. 57. P. 15696-15701.
- Xie Z. Q. Cross dipole stacking in the crystal of distyrylbenzene derivative: The approach toward high solid-state luminescence efficiency / Z. Q. Xie, B. Yang, F. Li, G. Cheng, L. L. Liu, G. D. Yang, H. Xu, , L. Ye, M. Hanif, S. Y. Liu, D. G. Ma, Y. G. Ma // J. Am. Chem. Soc. - 2005. - V. 127. - P. 14152-14153.

- 52. Zhou J. D. Magic-Angle Stacking and Strong Intermolecular pi-pi Interaction in a Perylene Bisimide Crystal: An Approach for Efficient Near-infrared (NIR) Emission and High Electron Mobility / J. D. Zhou, W. Q. Zhang, X. F. Jiang, C. Wang, X. H. Zhou, B. Xu, L. L. Liu, Z. Q. Xie, Y. G. Ma // J. Phys. Chem. Lett. - 2018. - V. 9. - P. 596-600.
- 53. Varghese S. Role of molecular packing in determining solid-state optical properties of piconjugated materials / S. Varghese, S. Das // J. Phys. Chem. Lett. - 2011. - V. 2. - P. 863-873.
- Ma S. Q. Efficient spontaneous and stimulated emission from 1,4-bis(2,2-diphenylvinyl)benzene single crystals with cross-dipole stacking / S. Q. Ma, J. B. Zhang, J. Y. Qian, J. L. Chen, B. Xu, W. J. Tian // Advanced Optical Materials. 2015. V. 3. P. 763-768.
- Becke A. D. The role of exact exchange / A. D. Becke // Journal of Chemical Physics. 1993. V. 98(7). P. 5648-5652.
- Lee C. T. Development of the colle-salvetti correlation-energy formula into a functional of the electron-density / C. T. Lee, W. T. Yang, R. G. Parr // Physical Review B. - 1988. - V. 37(2). - P. 785-789.
- Miehlich B. Results obtained with the correlation-energy density functionals of becke and lee, yang and parr / B. Miehlich, A. Savin, H. Stoll, H. Preuss // Chemical Physics Letters. - 1989. -V. 157(3). - P. 200-206.
- Krishnan R. Pople. Self-consistent molecular-orbital methods .20. Basis set for correlated wavefunctions / R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople // Journal of Chemical Physics. -1980. - V. 72(1). - P. 650-654.
- Frisch M. J. Gaussian 09 / M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox // Gaussian Inc. Wallingford CT. 2009.
- Bader R. F. W. Atoms in molecules as non-overlapping, bounded, space-filling open quantum systems / R. F. W. Bader, C.F. Matta // Foundations of Chemistry. 2013. V. 15(3). P. 253-276.
- 61. Keith T. A. AIMALL. TK Gristmill Software. Overland Park KS. USA. 2011.

- Lu T. Multiwfn: A multifunctional wavefunction analyzer / T. Lu, F.W. Chen // Journal of Computational Chemistry. - 2012. - V. 33(5). - P. 580-592.
- Hill G. Interaction energries in stacked DNA bases? How important are electrostatics? / G. Hill,
 G. Forde, N. Hill, W. A. Lester, W. A. Sokalski, J. Leszczynski // Chemical Physics Letters. 2003. V. 381(5-6). P. 729-732.
- Sinnokrot M. O. Highly accurate coupled cluster potential energy curves for the benzene dimer: Sandwich, T-shaped, and parallel-displaced configurations / M. O. Sinnokrot, C. D. Sherrill // Journal of Physical Chemistry A. - 2004. - V. 108(46). - P. 10200-10207.
- Sinnokrot M. O. Substituent effects in pi-pi interactions: Sandwich and T-shaped configurations / M. O. Sinnokrot, C. D. Sherrill // Journal of the American Chemical Society. - 2004. - V. 126(24). - P. 7690-7697.
- Cozzi F. Polar/pi interactions between stacked aryls in 1,8-diarylnaphthalenes / F. Cozzi, M. Cinquini, R. Annunziata, T. Dwyer, J. S. Siegel // Journal of the American Chemical Society. 1992. V. 114(14). P. 5729-5733.
- Rashkin M. J. Unexpected substituent effects in offset pi-pi stacked interactions in water / M. J. Rashkin, M. L. Waters // Journal of the American Chemical Society. - 2002. - V. 124(9). - P. 1860-1861.
- Waters M. L. Cation and substituent geometric effects on offset stacked aromatic interactions / M. L. Waters, M. J. Rashkin, N. T. Calloway // Abstracts of Papers of the American Chemical Society. - 2002. - V. 224. - P. U131.
- Mignon P. Interplay between pi-pi interactions and the H-bonding ability of aromatic nitrogen bases / P. Mignon, S. Loverix, P. Geerlings // Chemical Physics Letters. - 2005. - V. 401(1-3). -P. 40-46.
- Hunter C. A. The nature of pi-pi interactions / C. A. Hunter, J. K. M. Sanders // Journal of the American Chemical Society. - 1990. - V. 112(14). - P. 5525-5534.
- Hunter C. A. Dabco metalloporphyrin binding ternary complexes, host guest chemistry, and the measurement of pi-pi-interactions / C. A. Hunter, M. N. Meah, J. K. M. Sanders // Journal of the American Chemical Society. - 1990. - V. 112(15). - P. 5773-5780.
- Hunter C. A. Exciton coupling in porphyrin dimers / C. A. Hunter, J. K. M. Sanders, A.J. Stone // Chemical Physics. - 1989. - V. 133(3). - P. 395-404.
- Lippincott E. R. One-dimensional model of the hydrogen bond / E. R. Lippincott, R. Schroeder // The Journal of Chemical Physics. - 1955. - V. 23(6). - P. 1099-1106.
- Finch J. N. Hydrogen bond systems: temperature dependence of OH frequency shifts and OH band intensities / J. N. Finch, E. R. Lippincott // The Journal of Chemical Physics. 1956. V. 24(4). P. 908-909.

- 75. Dziembowska T. Estimation of the O-H^{...}O interaction energy in intramolecular hydrogen-bonds
 a comparative-study / T. Dziembowska, B. Szczodrowska, T. M. Krygowski, S. J. Grabowski // Journal of Physical Organic Chemistry. - 1994. - V. 7(3). - P. 142-146.
- Musin R. N. An integrated approach to the study of intramolecular hydrogen bonds in malonaldehyde enol derivatives and naphthazarin: trend in energetic versus geometrical consequences / R. N. Musin, Y. H. Mariam // Journal of Physical Organic Chemistry. - 2006. - V. 19(7). - P. 425-444.
- Schaefer T. Relation between hydroxyl proton chemical shifts and torsional frequencies in some ortho-substituted phenol derivatives / T. Schaefer // The Journal of Physical Chemistry. 1975. V. 79(17). P. 1888-1890.
- Yurenko Y. P. How many conformers determine the thymidine low-temperature matrix infrared spectrum? DFT and MP2 quantum chemical study / Y. P. Yurenko, R. O. Zhurakivsky, M. Ghomi, S. P. Samijlenko, D. M. Hovorun // Journal of Physical Chemistry B. 2007. V. 111(32). P. 9655-9663.
- Yurenko Y. P. Comprehensive conformational analysis of the nucleoside analogue 2 '-betadeoxy-6-azacytidine by DFT and MP2 calculations / Y. P. Yurenko, R. O. Zhurakivsky, M. Ghomi, S. P. Samijlenko, D. M. Hovorun // Journal of Physical Chemistry B. - 2007. - V. 111(22). - P. 6263-6271.
- Yurenko Y. P. The whole of intramolecular H-bonding in the isolated DNA nucleoside thymidine. AIM electron density topological study / Y. P. Yurenko, R. O. Zhurakivsky, M. Ghomi, S. P. Samijlenko, D. M. Hovorun // Chemical Physics Letters. - 2007. - V. 447(1-3). - P. 140-146.
- Espinosa E. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities / E. Espinosa, E. Molins, C. Lecomte // Chemical Physics Letters. -1998. - V. 285(3-4). - P. 170-173.
- Nikolaienko T. Y. Bridging QTAIM with vibrational spectroscopy: the energy of intramolecular hydrogen bonds in DNA-related biomolecules / T. Y. Nikolaienko, L. A. Bulavin, D. M. Hovorun // Physical Chemistry Chemical Physics. - 2012. - V. 14(20). - P. 7441-7447.
- Nikolaienko T. Y. Can we treat ab initio atomic charges and bond orders as conformationindependent electronic structure descriptors? / T. Y. Nikolaienko, L. A. Bulavin, D. M. Hovorun // Rsc Advances. - 2016. - V. 6(78). - P. 74785-74796.
- Afonin A. V. Intramolecular Interactions in N-Vinyl-2-Arylpyrroles and N-Vinyl-2-Heteroarylpyrroles by H-1 and C-13 Nmr / A. V. Afonin, M. V. Sigalov, S. E. Korostova, I. A. Aliev, A. V. Vashchenko, B. A.Trofimov // Magnetic Resonance in Chemistry. - 1990. - V. 28(7). - P. 580-586.

- Afonin A. V. Estimation of the Internal-Rotation Barrier in N-Vinylpyrrole by the Am-1, Indo-Fpt, and Pmr Methods / A. V. Afonin, M. V. Sigalov, A. V. Vashchenko // Bulletin of the Academy of Sciences of the Ussr Division of Chemical Science. - 1991. - V. 40(9). - P. 1841-1844.
- Afonin A. V. Estimating the energy of intramolecular hydrogen bonds from H-1 NMR and QTAIM calculations / A. V. Afonin, A. V. Vashchenko, M. V. Sigalov // Organic & Biomolecular Chemistry. - 2016. - V. 14(47). - P. 11199-11211.
- Afonin A. V. Estimating the energy of intramolecular bifurcated (three-centered) hydrogen bond by X-ray, IR and H-1 NMR spectroscopy, and QTAIM calculations / A. V. Afonin, I. V. Sterkhova, A. V. Vashchenko, M. V. Sigalov // Journal of Molecular Structure. - 2018. - V. 1163. - P. 185-196.
- De Silva P. Simultaneous visualization of covalent and noncovalent interactions using regions of density overlap / P. de Silva, C. Corminboeuf // Journal of Chemical Theory and Computation. -2014. - V. 10(9). - P. 3745-3756.
- Becke A. D. A simple measure of electron localization in atomic and molecular systems / A. D. Becke, K. E. Edgecombe // The Journal of Chemical Physics. 1990. V. 92(9). P. 5397-5403.
- Johnson E. R. Revealing noncovalent interactions / E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A. J. Cohen, W. T. Yang // Journal of the American Chemical Society. 2010.
 V. 132(18). P. 6498-6506.
- 91. Gillet N. Coupling quantum interpretative techniques: another look at chemical mechanisms in organic reactions / N. Gillet, R. Chaudret, J. Contreras-Garcia, W. T. Yang, B. Silvi, J. P. Piquemal // Journal of Chemical Theory and Computation. 2012. V. 8(11). P. 3993-3997.
- Jackson J. E. The C1-C3 bond in 1.1.1 propellane / J. E. Jackson, L. C. Allen // J. Am. Chem. Soc. - 1984. - V. 106. - P. 591-599.
- 93. Wiberg K. B. Theoretical-analysis of hydrocarbon properties. 1. Bonds, structures, charge concentrations, and charge relaxations / K. B. Wiberg, R. F. W. Bader, C .D. H. Lau // J. Am. Chem. Soc. 1987. V. 109. P. 985-1001.
- 94. Wiberg K. B. Theoretical-analysis of hydrocarbon properties. 2. Additivity of group properties and the origin of strain-energy / K. B. Wiberg, R. F. W. Bader, C. D. H. Lau // J. Am. Chem. Soc. - 1987. - V. 109. - P. 1001-1012.
- 95. Kar T. Origin of the bridge bond in 1.1.1 propellane / T. Kar, K. Jug // Chemical Physics Letters.
 1996. V. 256. P. 201-206.
- 96. Adcock W. Theoretical and (e,2e) experimental investigation into the complete valence electronic structure of 1.1.1 propellane / W. Adcock, M. J. Brunger, C. I. Clark, I. E. McCarthy,

M. T. Michalewicz, W. von Niessen, E. Weigold, D. A. Winkler // J. Am. Chem. Soc. - 1997. V. 119. - P. 2896-2904.

- 97. Ebrahimi A. Natural bond orbital (NBO) population analysis of the highly strained central bond in 1.1.1 propellane and some 1.1.1 heteropropellane compounds / A. Ebrahimi, F. Deyhimi, H. Roohi // J. Mol. Struc. Theochem. - 2003. - V. 626. - P. 223-229.
- Seiler P. Crystal-structure and electron-density distribution of 2 1.1.1 propellane derivatives at 81-K / P. Seiler, J. Belzner, U. Bunz, G. Szeimies // Helvetica Chimica Acta. - 1988. - V. 71. - P. 2100-2110.
- Messerschmidt M. Electron density and bonding at inverted carbon atoms: An experimental study of a 1.1.1 propellane derivative / M. Messerschmidt, S. Scheins, L. Grubert, M. Patzel, G. Szeimies, C. Paulmann, P. Luger // Angew. Chem. Int. Edit. - 2005. - V. 44. - P. 3925-3928.
- Messerschmidt M. Charge density of (-)-strychnine from 100 to 15 K, a comparison of four data sets / M. Messerschmidt, S. Scheins, P. Luger // Acta Crystallographica Section B - Structural Science Crystal Engineering and Materials. - 2005. - V. 61. - P. 115-121.
- Coropceanu V. Charge transport in organic semiconductors / V. Coropceanu, J. Cornil, D. A. da Silva, Y. Olivier, R. Silbey, J. L. Bredas // Chem. Rev. - 2007. - V. 107. - P. 926-952.
- 102. Abbate F. Nonaromatic sulfonamide group as an ideal anchor for potent human carbonic anhydrase inhibitors: role of hydrogen-bonding networks in ligand binding and drug design / F. Abbate, C. T. Supuran, A. Scozzafava, P. Orioli, M. T. Stubbs, G. Klebe // J. Med. Chem. - 2002. - V. 45. - P. 3583-3587.
- 103. Scozzafava A. Anticancer and antiviral sulfonamides / A. Scozzafava, T. Owa, A. Mastrolorenzo,
 C. T. Supuran // Curr. Med. Chem. 2003. V. 10. P. 925-953.
- 104. Supuran C. T. Carbonic anhydrase inhibitors and their therapeutic potential / C. T. Supuran, A. Scozzafava // Exp. Opin. Ther. Pat. 2000. V. 10. P. 575-600.
- 105. Sethi K. 3D-QSAR study of benzene sulfonamide analogs as carbonic anhydrase II inhibitors / K. K. Sethi, S. V. Verma, N. Prasanthi, S. K. Sahoo, R. B. Parhi, P. Suresh // Bioorg. Med. Chem. Lett. 2010. V. 20. P. 3089-3093.
- 106. Krystek S. R. Jr. Tree-dimensional quantitative structure-activity relationships of sulfonamide endothelin inhibitors / S. R. Jr. Krystek, J. T. Hunt, P. D. Stein, T. R. Stouch // J. Med. Chem. -1995. - V. 38. - P. 659-668.
- 107. Stein P. D. Discovery and structure-activity-relationships of sulfonamide eta-selective antagonists / P. D. Stein, D. M. Floyd, S. Bisaha, J. Dickey, N. R. Girotra, J. Z. Gougoutas, M. Kozlowsky, V. G. Lee, E. C.-K. Liu, M. F. Malley, D. McMullen, C. Mitchell, S. Moreland, N. Murugesan, R. Serafino, M. L. Webb, R. Zhang, J. T. Hunt // J. Med. Chem. - 1995. - V. 38. - P. 1344-1354.

- 108. Senger S. Arylsulfonamides: a study of the relationship between activity and conformational preferences for a series of factor Xa inhibitors / S. Senger, M. A. Convery, C. Chan, N. S. Watson // Bioorg. Med. Chem. Lett. - 2006. - V. 16. - P. 5731-5735.
- 109. Senger S. Sulfonamide-related conformational effects and their importance in structure-based design / S. Senger, C. Chan, M. A. Convery, J. A. Hubbard, G. Shah, N. S. Watson, R. J. Young // Bioorg. Med. Chem. Lett. - 2007. - V. 17. - P. 2931-2934.
- Parkin A. Using small molecule crystal structure data to obtain information about sulfonamide conformation / A. Parkin, A. Collins, C. J. Gilmore, C. C. Wilson // Acta Crystallogr. - 2008. -B64. - P. 66-71.
- 111. Brameld K. A. Small molecule conformational preferences derived from crystal structure data. A medicinal chemistry focused analysis / K. A. Brameld, B. Kuhn, D. C. Reuter, M. Stahl // J. Chem. Inf. Model. - 2008. - V. 48. - P. 1-24.
- 112. Sanphui P. Polymorphism in secondary benzene sulfonamides / P. Sanphui, B. Sarma, A. Nangia// Cryst. Growth Des. 2010. V. 10. P. 4550-4564.
- 113. Terada S. Polymorphism of Aromatic Sulfonamides with Fluorine Groups / S. Terada, K. Katagiri, H. Masu, H. Danjo, Y. Sei, M. Kawahata, M. Tominaga, K. Yamaguchi, I. Azumaya // Cryst. Growth Des. -2012. V. 12. P. 2908-2916.
- 114. Katagiri K. Coordination polymers and networks constructed from bidentate ligands linked with sulfonamide and silver(I) ions / K. Katagiri, T. Ikeda, H. Tominaga, H. Masu, I. Azumaya // Cryst. Growth Des. - 2010. - V. 10. - P. 2291-2297.
- 115. Zoppi A. Complexation of sulfonamides with β-cyclodextrin studied by experimental and theoretical methods / A. Zoppi, M. A. Quevedo, A. Derlivo, M. R. Longhi // J. Pharm. Sci. -2010. - V. 99. - P. 3166-3176.
- 116. De Araújo M. V. G. Sulfadiazine/hydroxypropyl cyclodextrin host/guest system: Characterization, phase-solubility and molecular modeling / M. V. G. de Araújo, E. K. B. Vieira, G. S. Lázaro, L. S. Conegero, L. E. Almeida, L. S. Barreto, N. B. da Costa, Jr. Gimenez, I. F. Gimenez // Bioorg. Med. Chem. - 2008. - V. 16. - P. 5788-5794.
- 117. Caira M. R. Sulfa Drugs as Model Cocrystal Formers / M. R. Caira // Mol. Pharmaceutics. -2007. - V. 4. - P. 310-316.
- 118. Goud N. R. Novel furosemide cocrystals and selection of high solubility drug forms / N. R. Goud, S. Gangavaram, K. Suresh, S. Pal, S. G. Manjunatha, S. Nambiar, A. Nangia // J. Pharm. Sci. 2012. V. 101. P. 664-680.
- 119. Ghosh S. Co-crystals of sulfamethazine with some carboxylic acids and amides: co-former assisted tautomerism in an active pharmaceutical ingredient and hydrogen bond competition study / S. Ghosh, P. P. Bag, C. M. Reddy // Cryst. Growth Des. 2011. V. 11. P. 3489-3503.

- 120. Bingham, A. L. Over one hundred solvates of sulfathiazole / A. L. Bingham, D. S. Hughes, M. B. Hursthouse, R. W. Lancaster, S. Tavener, T. L. Threlfall // Chem. Commun. (Cambridge, U.K.). 2001. P. 603-604.
- 121. Aitipamula S. The solvates of sulfamerazine: structural, thermochemical, and desolvation studies
 / S. Aitipamula, P. S. Chow, R. B. H. Tan // CrystEngComm. 2012. V.14. P. 691-699.
- 122. Pratt J. Sulfapyridine (polymorph III), sulfapyridine dioxane solvate, sulfapyridine tetrahydrofuran solvate and sulfapyridine piperidine solvate, all at 173 K / J. Pratt, J. Hutchinson, Ch.L.K. Stevens // Acta Cryst. 2011. C67. P. o487-o491.
- 123. Hu Z.-Q. A novel self-assembled organic tubular structure / Z.-Q. Hu, Ch.-F. Chen // Chem. Commun. (Cambridge, U.K.). 2005. P. 2445-2447.
- 124. Perlovich G. L. Sulfonamide molecular crystals: structure, sublimation thermodynamic characteristics, molecular packing, hydrogen bonds networks / G. L. Perlovich, A. M. Ryzhakov, V. V. Tkachev, L. Kr. Hansen, O. A. Raevsky // Cryst. Gro. & Des. 2013. V. 9. P. 4002-4016.
- 125. Fernandes W. B. The discrete role of chlorine substitutions in the conformation and supramolecular architecture of arylsulfonamides / W. B. Fernandes, A. Q. Aragão, F. T. Martins, C. Noda-Perez, C. Lariuccic, H. B. Napolitanoa // Acta Cryst. - 2011. - C67, - P. o226–o229.
- 126. Chohan Z. H. Structure of a new bioactive agent containing combined antibacterial and antifungal pharmacophore sites: 4-{[(E)-(5-Bromo-2-hydroxyphenyl)methylidene]amino}-N-(5methyl-1,2-oxazol-3-yl)benzenesulfonamide / Z. H. Chohan, H. A. Shad, L. Toupet, T. Hadda Ben, M. Akkurt // J. Chem. Crystallogr. - 2011. - V. 41. - P. 159-162.
- 127. Chaithanya U. 4-Nitro-N-phenylbenzenesulfonamide / U. Chaithanya, S. Forob, B. Thimme Gowdaa // Acta Cryst. - 2012. - E68. - P. o2872.
- 128. Rozentsveig I. B., Serykh V. Yu.,[a] Chernysheva G. N., Kondrashov E. V., Fedotova A. I., Ushakov I. A., Tretyakov E. V., Romanenko G. V. Two-Step Regioselective Synthesis of 3-(Sulfonylamino)imidazo-[1,2-*a*]pyrimidines from 2-Aminopyrimidines and N-(2,2-Dichloro-2phenylethylidene)arensulfonamides // Eur. J. Org. Chem. 2014. P. 6547-6557.
- 129. Rozentsveig I. B. One-Pot Synthesis of N-(Imidazo[1,2-a]pyridin-3-yl)- and N-(Imidazo[2,1-b][1,3]thiazol-5-yl)sulfonamides / I. B. Rozentsveig, V. Y. Serykh, G. N. Chernysheva, K. A. Chernyshev, E. V. Kondrashov, E. V. Tretyakov, G. V. Romanenko // Eur. J. Org. Chem. 2013. P. 368-375.
- 130. Serykh V. Y. One-pot regioselective synthesis of new 5-(arylsulfonylamino)imidazo[2,1b]thiazoles / V. Y. Serykh, G. N. Chernysheva, E. V. Kondrashov, A. V. Vashchenko, V. I. Smirnov, I. B. Rozentsveig // Arkivoc. - 2015. - P. 377-391.

- 131. Li Fei Nie. Synthesis and biological evaluation of novel sulfonamide derivatives of tricyclic thieno[2,3-d]pyrimidin-4(3H)-ones on melanin synthesis in murine B16 cells / Fei Nie Li, Khurshed Bozorov, Chao Niu, Guozheng Huang, Haji Akber Aisa // Res. Chem. Intermed. -2017. - V. 43. - P. 6835-6843.
- 132. Zhao Yun-Zhou. RhII-Catalyzed [3+2] Cycloaddition of 2H-Azirines with N-Sulfonyl-1,2,3-Triazoles / Yun-Zhou Zhao, Hai-Bin Yang, Xiang-Ying Tang, Min Shi // Chem. Eur. J. - 2015. -V. 21. - P. 3562-3566.
- 133. You Xu. Titanium-mediated cross-coupling reactions of 1,3-butadiynes with α-iminonitriles to 3aminopyrroles: observation of an imino aza-Nazarov cyclization / Xu You, Xin Xie, Renhong Sun, Haoyi Chen, Shi Li, Yuanhong Liu // Org. Chem. Front. - 2014. - V. 1. - P. 940.
- 134. Никонова В. С. Синтез, структура и химические превращения 2-хлорпропенилсульфонов / В. С. Никонова, А. Р. Калиев, Т. Н. Бородина, В. И. Смирнов, И. Б. Розенцвейг, Н. А. Корчевин // Журнал органической химии. 2019. Т. 55. № 12. С. 1926-1932.
- 135. Serykh V. Yu. Regioselective reaction of imidazole-2-thiols with N-sulfonylphenyldichloroacetaldimines: en route to novel sulfonylaminosubstituted imidazo[2,1-b]thiazoles and thiazolo[3,2-a]benzimidazoles / V. Yu. Serykh, A. R. Kaliev, I. A. Ushakov, T. N. Borodina, V. I. Smirnov, I. B. Rozentsveig // Arkivoc. 2018. Part III, P. 62-75.
- 136. Aniruddha Das. Studies on complex π - π and t-stacking features of imidazole and phenyl/phalophenyl units in series of 5-amino-1-(phenyl/p-halophenyl)imidazole-4-carboxamides and their carbonitrile derivatives: Role of halogens in tuning of conformation / Das Aniruddha // Journal of Molecular Structure. 2017. V. 1147. P. 520-540.
- 137. Serykh V. Yu. New Approach to the Synthesis of 2-Sulfonylaminosubstituted Imidazo[1,2a]pyridines via the Cascade Reaction of N-(1-aryl-2,2,2-trichloroethyl) sulfonamides with 2-Aminopyridines / V. Yu. Serykh, I. A. Ushakov, T. N. Borodina, V. I. Smirnov, I. B. Rozentsveig // ChemistrySelect. - 2019. - T. 4. - P. 13485-13489.
- 138. Goszczycki P. Synthesis, crystal structures, and optical properties of the p-p-interacting pyrrolo[2,3-b]quinoxaline derivatives containing 2-thienyl substituent / P. Goszczycki, K. Stadnicka, M. Z. Brela, J. Grolik, K. Ostrowska. // Journal of Molecular Structure. - 2017. - V. 1146. - P. 337-346.
- Sheldrick G.M. A short history of SHELX / G.M. Sheldrick // Acta Crystallogr. 2008. A64. -P. 112-122.
- 140. Kilchherr F. Single-molecule dissection of stacking forces in DNA / F. Kilchherr, C. Wachauf, B. Pelz, M. Rief, M. Zacharias, H. Dietz // Science. 2016. V. 353. P. aaf5508-1 aaf5508-9.

- 141. Пырков Т. В. Роль стэкинг-взаимодействийв комплексах белков с аденин- и гуанинсодержащими лигандами / Т. В. Пырков, Д. В. Пыркова, Е. Д. Балицкая, Р. Г. Ефремов. // Acta naturae. - 2009. - № 1. - С. 124-127.
- 142. Schneebeli S. T. Single-Molecule Conductance through multiple π-π-stacked benzene rings determined with direct electrode-to-benzene ring connections / S. T. Schneebeli, M. Kamenetska, Zh. Cheng, R. Skouta, R. A. Friesner, L. Venkataraman, R. Breslow. // J. Am. Chem. Soc. -2011. - V. 133(7). - P. 2136-2139.