

Федеральное государственное бюджетное учреждение науки Иркутский институт химии им. А.Е. Фаворского СО РАН

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

История и философия науки

основная образовательная программа подготовки аспиранта по направлению 04.06.01 Химические науки,

Уровень высшего образования подготовки научно-педагогических кадров в аспирантуре

Профили:

02.00.03 Органическая химия

02.00.04 Физическая химия

02.00.06 Высокомолекулярные соединения

02.00.08 Химия элементоорганических соединений

Квалификация: Исследователь.

Преподаватель-исследователь

Рабочая программа составлена на основании федеральных государственных образовательных стандартов к основной образовательной программе высшего образования подготовки научно-педагогических кадров в аспирантуре по направлению 04.06.01 Химические науки

РАБОЧАЯ ПРОГРАММА РАССМОТРЕНА И ОДОБРЕНА на заседании Ученого совета ИрИХ СО РАН Протокол № 5 от 25 мая 2017 г.

Зав. аспирантурой к.х.н.

Т.Н. Комарова

1. Цели и задачи учебной дисциплины

Цель дисциплины:

- ознакомление с содержанием основных методов современной науки, принципами формирования научных гипотез и критериями выбора теорий;
- формирование понимания сущности научного познания и соотношения науки с другими областями культуры;
 - создание философского образа современной науки;
- подготовка к восприятию материала различных наук для использования в конкретной области исследования.

Задачи дисциплины:

- изучение основных разделов философии науки;
- освещение истории науки, общих закономерностей возникновения и развития науки;
- приобретение навыков самостоятельного философского анализа содержания научных проблем, познавательной и социокультурной сущности достижений и затруднений в развитии науки;
 - обеспечение базы для усвоения современных научных знаний;
 - знакомство с основными западными концепциями науки;
 - изложение мировоззренческих итогов науки XX столетия.

2. Место дисциплины в структуре ООП

Дисциплина «История и философии науки» относится к блоку 1 и является обязательной дисциплиной базовой части учебного плана по направлению 04.06.01 Химические науки. Место в учебном плане — цикл Б1.Б.1. Данная дисциплина составляет неотъемлемую часть подготовки аспирантов химического профиля в научных организациях.

3. Требования к результатам освоения дисциплины

У выпускника по направлению 04.06.01 Химические науки в результате освоения дисциплины «История и философии науки» аспирантуры должны быть сформированы следующие универсальные компетенции:

- УК-1 аспирант должен быть способен к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях;
- УК-2 аспирант должен быть способен проектировать и осуществлять комплексные исследования, в том числе междисциплинарные, на основе целостного системного научного мировоззрения с использованием знаний в области истории и философии науки.

В результате изучения дисциплины аспирант должен:

- знать методы критического анализа и оценки современных научных достижений, а также методы генерирования новых идей при решении исследовательских и практических

задач, в том числе междисциплинарных областях; основные направления, проблемы, теории и методы философии, содержание современных философских дискуссий по проблемам общественного развития; основные концепции современной философии науки, основные стадии эволюции науки, функции и основания научной картины мира;

- уметь выделять и систематизировать основные идеи в научных текстах; критически оценивать любую поступающую информацию, вне зависимости от источника; формировать и аргументировано отстаивать собственную позицию по различным проблемам философии; использовать положения и категории философии для оценивания и анализа различных социальных тенденций, фактов и явлений;
- владеть навыками сбора, обработки, критического анализа и систематизации информации по теме исследования; навыками восприятия и анализа текстов, имеющих философское содержание; навыками письменного аргументированного изложения собственной точки зрения; приемами ведения дискуссии и полемики, навыками публичной речи.

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 4 зачетные единицы (144 часа).

4.1. Структура дисциплиныОбъем учебной работы, ч

№	Наименование	Объем учебной работы, ч							Вид
	дисциплины	Всего	Всего	Из аудиторных				Самост.	итогового
			аудиторн.	Лекц.	Лаб.	Практ.	КСР	работа	контроля
1	История и философия науки	144	54	54	-	-	36	54	Экзамен

4.2. Содержание дисциплины

3.1. Общее (по всем темам):

Тема 1. Методология истории науки. Наука как знание и наука как деятельность. Формы научного знания. Наука в системе культуры. Научное сообщество. Понятие научной картины мира. История науки и развитие научного мировоззрения. Закономерности возникновения и развития науки. Научные школы, условия их формирования и роль в развитии науки.

Тема 2. История античной науки. Основные этапы развития античной науки. Влияние полисной демократии на развитие науки. Особенности науки Древней Греции.

Ионийская натурфилософия. Поиски первоосновы. Фалес, Анаксимандр, Анаксимен. Логос Гераклита. Апории Зенона. Атомистика Левкиппа и Демокрита. Софистика.

Сократ и его метод поиска истины. Научные школы Платона и Аристотеля. Особенности атомизма Эпикура. Технические достижения Архимеда. Астрономические воззрения Птолемея.

Тема 3. Арабская наука. Европейская наука до XV века. «О классификации наук» Аль-Фараби. Медицинские взгляды Ибн Сины (Авиценны). Появление астрономической школы в Багдаде.

Средневековое понимание природы и человека. Господство религиозной идеологии. Схоластика.

Характерные черты науки эпохи Возрождения. Распространение книгопечатания. Великие географические открытия. Научная и инженерная деятельность Леонардо да Винчи. Идея бесконечности мира у Николая Кузанского.

Тема 4. Европейская наука XV-XVII вв. Научная революция Николая Коперника. Джордано Бруно. Тихо Браге. Иоганн Кеплер. Изобретение телескопа. Галилео Галилей.

Методология науки Френсиса Бэкона. Вихревая космология Декарта. Обоснование рационалистического мышления Декартом.

- **Тема 5. Возникновение науки Нового времени.** Механистическая картина мира. Профессионализация научного труда и возникновение научных учреждений. Ньютон и Лейбниц о дифференциальном и интегральном исчислении. «Математические начала натуральной философии» И. Ньютона.
- **Тема 6. История и философия европейской науки XVIII в.** Д. Дидро. Д'Аламбер. Де'Ламетри. Естественнонаучные идеи М.В.Ломоносова. Космогоническая концепция Канта-Лапласа. «Лапласовский» детерминизм.

Теория «флогистона». Революция в химии. Карл фон Линней о классификации растений и животных. Изобретение промышленных машин и создание парового двигателя.

Тема 7. Классическая наука XIX в. Позитивизм О. Конта. Создание неевклидовых геометрий. Лобачевский Н.И. Бернхард Риман. Открытие Фарадеем электромагнитной индукции. Опыт Майкельсона-Морли.

Атомная теория Джона Дальтона. А.М. Бутлеров. Д.И. Менделеев. Клеточная теория Шлейдена и Шванна. Ч. Дарвин. Грегор Мендель. И.М. Сеченов. И.П. Павлов.

Начало применения результатов научного исследования в промышленности.

- **Тема 8. Истоки и философские основания неклассической науки.** Создание теории относительности и квантовой теории. В.Рентген. А.Беккерель. Макс Планк и понятие кванта энергии. Специальная теория относительности. Общая теория относительности. Жизненный путь Альберта Эйнштейна.
- **Тема 9. Развитие неклассической науки.** Логический позитивизм, его представители. Экспериментальное подтверждение общей теории относительности. Гипотеза Луи де Бройля о волновых свойствах микрообъектов. Обоснование квантовой механики. В. Гейзенберг. Н. Бор. Гипотеза кварков М. Гелл-Манна и Г. Цвейга.

Концепция «Большого взрыва». Эдвин Хаббл о разбегании галактик. Модели Метагалактики.

Томас Морган и хромосомная теория наследственности. Д. Уотсон и Φ . Крик о структуре ДНК.

В.И.Вернадский. Запуск первого спутника. Первые космические полёты.

- **Тема 10.** Философские концепции науки. Современная картина мира и её принципиальная незавершенность. Современная космология. Антропный принцип. Проблема гуманизации науки. Роль науки в решении глобальных проблем современной цивилизации. Будущее науки. Научные революции. Анализ проблем динамики научного знания (К. Поппер и И. Лакатос; Т. Кун и П. Фейерабенд).
- Тема 11. Проблемы методологии современного научного познания. Метод, методика, методология. Эволюция И сосуществование методологий. метафизической методологии. Особенности эволюционно-диалектической методологии. Системная (структурно-функциональная) методология. Основные положения системнодиалектической методологии Прикладное познания. использование системнодиалектической методологии (когнитивный анализ, системный анализ, полисистемный анализ и синтез). Методология полисистемного моделирования.

5. Образовательные технологии

- 1. Овладение дисциплиной «История и философия науки» предполагает использование следующих образовательных технологий (методов):
- лекция (вводная, обзорная, репродуктивно-информационная, заключительная) целесообразность традиционной лекции состоит в решении следующих образовательных и развивающих задач курса: показать значимость курса для профессионального становления будущего педагога; представить логическую схему изучения представленного курса; сформировать мотивацию магистров на освоение учебного материала; связать теоретический

материал с практикой будущей профессиональной деятельности; представить научнопонятийную основу изучаемой дисциплины; систематизировать знания магистров по изучаемой проблеме; расширить научный кругозор магистра как будущего специалиста и т.д.;

- лекция-беседа позволяет учитывать отношение магистров к изучаемым вопросам, выявлять проблемы в процессе их осмысления, корректировать допускаемые ошибки и т.д.;
- лекция-дискуссия представляет организацию диалоговой формы обучения, создающей условия для формирования оценочных знаний магистров, обусловливающих проявление их профессиональной позиции как будущего специалиста; формируется умение высказывать и аргументировать личную точку зрения; развивается способность к толерантному восприятию иных точек зрения и т.д.;
- рефлексия обеспечивает самоанализ и самооценку достижения результатов познавательной деятельности.

Самостоятельная внеаудиторная работа аспирантов предусматривает: анализ литературных источников, выполнение творческих заданий, разработку программ научного исследования, решение проблемных задач.

6. Учебно-методическое обеспечение самостоятельной работы аспирантов

Темы практических и лабораторных занятий (учебным планом не предусмотрены) **Тематика заданий для самостоятельной работы:**

І. Работа с конспектами лекций и вопросами свободного обсуждения:

Тема обсуждения: «Гегель о классификации наук»:

Ключевые пункты обсуждения:

- 1. Схематическое изображение философской системы Гегеля.
- 2. «Логика» и её три учения.
- 3. «Философия природы» (механика, физика, органическая физика).
- 4. «Философия духа»: антропология, феноменология, психология; социальноисторическая жизнь человека; философия.

Тема обсуждения: «Преемственность в науке: «традиция» (старое) и «новация» (новое):

Ключевые пункты обсуждения:

- 1. Изобретение и открытие.
- 2. Новое и принципиально новое.
- 3. Инновация как нововведение.
- 4. Научные революции, сколько их было?
- 5. Т. Кун и И. Лакатос о развитии науки.

Тема обсуждения: «Наука и предвидение будущего»:

Ключевые пункты обсуждения:

- 1. Соотношение понятий «прогноз», «план», «программа», «проект».
- 2. Прогнозы исследовательские и нормативные.
- 3. Как понимать термин «проектное мышление»?
- 4. Основные принципы научного предвидения.

Тема обсуждения: «Проблема истины в познании»:

Ключевые пункты обсуждения:

- 1. Истина одна на всех или у каждого своя?
- 2. Истина и правда. Истина и ценность.
- 3. Критерии истинности.
- 4. Диалектичность истины.

Тема обсуждения: «Понимание и объяснение. Как они соотносятся?»:

Ключевые пункты обсуждения:

1. Сопоставление понятий «знание», «понимание», «объяснение».

2. Понятия «смысл» и «значение».

Тема обсуждения: «Рациональность научного знания»:

Ключевые пункты обсуждения:

- 1. Рациональность как способ отношения человека к миру.
- 2. Многообразие типов и форм рациональности.
- 3. Научная рациональность.
- 4. Развитие научной рациональности. Новое понимание научной рациональности.

Тема обсуждения: «Реальны ли виртуальные микрообъекты?»:

Ключевые пункты обсуждения:

- 1. Проблема классификации микрообъектов.
- 2. Смысл термина «виртуальный».
- 3. Распад микрообъектов на частицы-продукты.

Возможные темы для обсуждения:

- 1. Роль теории относительности в развитии представлений о пространстве и времени.
 - 2. Концепция ноосферы и её научный статус.
 - 3. Структурность и системность. Природные системы и природа как система.
 - 4. Соотношение науки, философии и религии.

Последующие темы для дискуссионного обсуждения выявляются в ходе изучения дисциплины «История и философия науки».

ІІ. Работа с основной и дополнительной литературой (конспектирование, реферирование, рецензирование).

III. Вопросы для подготовки по «Истории науки»:

Химия:

- 1. История химии и классификация химических наук.
- 2. Проникновение точных наук в химию.
- 3. Эволюционная теория Ч. Дарвина и ее значение для развития биологии.
- 4. Создание клеточной теории (М. Шлейден, Т. Шванн).
- 5. Клетка элементарная единица живого.
- 6. Становление и развитие генетики.
- 7. ДНК главный носитель генетической информации.
- 8. Роль РНК в реализации наследственной информации.
- 9. Генная инженерия.
- 10. Роль прогрессивных технологий в растениеводстве.
- 11. Учение И.П.Павлова об условных и безусловных рефлексах.
- 12. Место человека в системе животного мира.
- 13. Антропогенез и дальнейшая эволюция человека.
- 14. Методы изучения генетики человека.

IV. Написание реферата.

7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Формой промежуточного контроля является собеседование по соответствующим разделам программы, коллоквиумы и написание реферата.

Формой итогового контроля является кандидатский экзамен.

Примерный список вопросов к экзамену:

Общие проблемы философии науки:

- 1. Предмет философии науки, её место в системе философского и конкретнонаучного знания.
 - 2. Понятие мировоззрения. Структура мировоззрения. Особенности научного и

философского мировоззрения.

- 3. Многообразие форм знания. Научное и вненаучное знание. Научное знание как система.
- 4. Понятие науки. Наука как познавательная деятельность, как сфера культуры и как социальный институт. Проблема классификации наук.
 - 5. Наука и философия. Понятие научной картины мира.
 - 6. Генезис науки и проблема периодизации её истории.
- 7. Становление философии и науки в античном мире. Философия как универсальная наука в период античности.
 - 8. Платон и Аристотель, их место в последующем развитии науки.
 - 9. Научные и этические взгляды Эпикура, Евклида, Птолемея.
- 10. Основные направления философии и науки Средневековья. Научная мысль арабского Востока.
 - 11. Развитие философии и науки в эпоху Возрождения.
- 12. Формирование опытной науки в Новое время. Идея создания «новой науки» (Ф. Бэкон, Р. Декарт).
 - 13. Зарождение и развитие классической науки (Г. Галилей, И. Ньютон, Г. Лейбниц).
- 14. Наука и философия в эпоху Просвещения. Возникновение дисциплинарно организованной науки.
- 15. Классическая немецкая философия, её вклад в решение проблемы взаимоотношения философии, науки и методологии.
 - 16. Основные этапы эволюции позитивизма. Постпозитивистская философия науки.
 - 17. Становление идей и методов неклассической науки.
- 18. Постнеклассическая наука. Новые типы наук (синтетические, интегративные, комплексные). Синергетика.
 - 19. Анализ проблем динамики научного знания (Т. Кун, И. Лакатос).
- 20. Особенности формирования технических наук, их место в системе наук и системе пенностей человека.
- 21. Математизация как характерная черта современной науки. Границы применимости математики в естественнонаучном и социально-гуманитарном познании.
 - 22. Роль науки в анализе и решении современных глобальных проблем.
- 23. Роль науки и философии в объяснении социальных процессов. Взаимодействие науки и общества.
 - 24. Наука и власть. Проблемы государственного регулирования науки.
 - 25. Наука как одна из форм общественного сознания, её специфика.
 - 26. Наука и духовные ценности общества. Этические проблемы науки XX1 века.
 - 27. Роль науки в становлении и формировании личности.
 - 28. Инноватика. Инновационная деятельность в современной науке.
 - 29. Процессы глобализации в современном обществе. Сущность антиглобализма.
- 30. Смена мировоззренческой парадигмы как необходимое условие решения проблем современности.

Философские проблемы областей научного знания. Проблемы методологии научного познания:

- 1. Физика как основа естествознания. Фундаментальные взаимодействия.
- 2. Материя, энергия, информация как фундаментальные категории современной науки.
- 3. Научное и философское понимание движения. Основные формы движения. Движение и развитие.
 - 4. Пространство. Неевклидовы геометрии.
 - 5. Субстанциальная, реляционная и атрибутивная концепции времени.
 - 6. Диалектическое единство материи, движения, пространства и времени.
 - 7. Проблема классификации микрообъектов.

- 8. Философский смысл соотношения неопределенностей В.Гейзенберга и принципа дополнительности Н. Бора.
- 9. Детерминизм. Формы детерминизма. Вероятность и её роль в современном научном познании.
 - 10. Модели эволюции Метагалактики в современной космологии.
 - 11. Математизация научного знания. Современные концепции математики.
 - 12. Критика концепции «Большого взрыва».
- 13. Самоорганизация. Синергетика как основа понимания и объяснения открытых систем.
- 14. Представление о географической среде как об арене жизни человека В.И.Вернадский о переходе биосферы в ноосферу.
 - 15. Понятие жизни и живого. Организованность и и целостность живых систем.
 - 16. Проблема человека и его эволюции. Триединая природа человека.
 - 17. Роль космических факторов в биологических и социальных процессах.
 - 18. Сознание и мышление. Личность и проблема внутреннего «Я» личности.
 - 19. Проблема искусственного интеллекта
- 20. Социально-философский анализ проблем биотехнологий, генной и клеточной инженерии, клонирования.
 - 21. Концепции общеисторического процесса.
- 22. Научное познание, его возможности и границы. Познание как отражение реальности.
 - 23. Проблема истины в науке и философии. Критерии истинности знания.
- 24. Понятия «метод», «методика», «методология». Эволюция и сосуществование методологий познания.
 - 25. Основные положения системно-диалектической методологии познания.
- 26. Системный подход и системный анализ. Понятия «элемент», «система», «структура».
- 27. Прикладное использование системно-диалектической методологии (когнитивный, системный и полисистемный анализ).
 - 28. Познание как моделирование реальности. Классификация моделей.
 - 29. Математическое моделирование, проблема интерпретации.
- 30. Понятие стиля научного мышления. Особенности современного стиля научного мышления.
 - 31. Чувственное и логическое в познании. Явление и сущность как ступени познания.
 - 32. Особенности эмпирического и теоретического исследования.
- 33. Категории «возможность» и «действительность» как форм отражения развития. Прогноз и предвидение.

8. Учебно-методическое и информационное обеспечение дисциплины

http://www.philosophy.ru/library/catalog.html/, Интернет-источники: http://soipcatalog.informika.ru/, http://www.ido.edu.ru/ffec/econ-index.html/, http://academic.ru/ (образовательный портал), http://ru.wikipedia.org/ (образовательный портал). http://www.knigafund.ru/ (электронная библиотека), http:// www.slovari.yandex.ru/ (портал www.gumer.info/ словарей), http:// (электронная библиотека), http:// www.koob.ru/ (электронная библиотека).

Оборудование: ноутбук, мультимедийный проектор.

Материалы: иллюстрации (таблицы, графики, рисунки), мультимедийные презентации.

Литература

Основная:

- 1. Алексеев П.В. Философия / П.В. Алексеев, А.В. Панин. М.: Проспект, 2009.
- 2. Бессонов Б.Н. История и философия науки / Б.Н. Бессонов. М. Высшее образование, 2009. 395с.
- 3. Введение в философию: Учебное пособие для вузов / И.Т. Фролов [и др.]. 4-е изд., перераб. и доп. М.: Культурная революция, Республика, 2007.
- 4. Губин В.Д. Философия / В.Д. Губин. М.: Проспект, 2008.
- 5. Ильин В.В. Философия и история науки / В.В. Ильин. М.: Моск. ун-т, 2005.
- 6. История и философия науки: Учебное пособие для аспирантов / Под ред. А.С. Мамзина. Спб.: Питер, 2008. 304 с.
- 7. Кохановский В.П. Философия науки: Учебное пособие / В.П. Кохановский, В.И. Пржиленский, Е.А. Сергодеева. М.: ИКЦ «МарТ», 2006. 496 с.
- 8. Кравченко А.Ф. История и методология науки и техники: Учебное пособие / А.Ф. Кравченко. Новосибирск: Изд-во СО РАН, 2005. 360 с.
- 9. Марков Б.В. Философия / Б.Ф. Марков. СПб.: Питер, 2009.
- 10. Микешина Л.А. Философия науки: Учебное пособие / Л.А. Микешина. М.: Флинта, 2005. 464 с.
- 11. Островский Э.В. История и философия науки / Э.В. Островский. М., 2007. 160 с.
- 12. Современные философские проблемы естественных, технических и социальногуманитарных наук / Под ред. В.В. Миронова. М.: Гардарики, 2006. 639 с.
- 13. Спиркин А.Г. Философия / А.Г. Спиркин. М.: Гардарики, 2009.
- 14. Степин В.С. История и философия науки / В.С. Степин. М.: Академический проект, 2011.
- 15. Степин В.С. Философия науки. Общие проблемы: Учебник для аспирантов и соискателей ученой степени кандидата наук / В.С. Степин. М.: Гардарики, 2006. 384 с.
- 16. Философия / В.Г. Кузнецов [и др.]. М.: Высшее образование, 2009.
- 17. Философия: Учебник / Под ред. А.Ф. Зотова, В.В. Миронова, А.В. Разина М.: Проспект, 2009.
- 18. Философия: Учебник / Под ред. В.Д. Губина, Т.Ю. Сидориной. М.: Гардарики, 2008.
- 19. Философия: Учебник / Под ред. В.Н. Лавриненко. М.: Юристь, 2008.
- 20. Философия: Учебник / Под ред. В.П. Кохановского. Ростов-на-Дону, 2008.

Дополнительная:

- 1. Балахонский В.В. История и философия науки: Учебное пособие для аспирантов / В.В. Балахонский, Б.П. Джекутанов, В.И. Стрельченко. Спб.: Питер, 2008. 368 с.
- 2. Канке В.А. Основные философские направления и концепции науки / В.А. Канке. М., 2004.
- 3. Койре А. Очерки истории философской мысли. О влиянии философских концепций на развитие научных теорий / А. Койре. М., 1985.
- 4. Кузнецов В.Т. Словарь философских терминов / В.Т. Кузнецов. М.: Инфра-М, 2009.
- 5. Лебедев С.А. Философия науки: Учебное пособие для вузов / С.А. Лебедев. М.: Академический проект, 2006. 736 с.
- 6. Лебедев С.А. Философия науки: Краткая энциклопедия / С.А. Лебедев. М.: Академический проект, 2008. 692 с.
- 7. Лешкевич Т.Г. Философия науки: традиции и новации: Учебное пособие для вузов / Т.Г. Лешкевич. М., 2001.
- 8. Мальцев И.А. Дискретная математика: Учебное пособие / И.А. Мальцев. 2-е изд., испр. СПб.: Лань, 2011.-290 с.
- 9. Месяц Г.А. Спасти науку / Г.А. Месяц. М.: Наука, 2001. 255 с.
- 10. Соломатин В.А. История и концепции современного естествознания / В.А. Соломатин. М., 2002.

- 11. Соломатин В.А. История науки / В.А. Соломатин. М., 2003.
- 12. Степин В.С. Теоретическое знание / В.С. Степин. М.: Прогресс-Традиция, 2003. 744 с.
- 13. Степин В.С. Философия науки и техники / В.С. Степин, В.Г. Горохов, М.А. Розов. М.: Контакт-Альфа, 1995. 384 с.
- 14. Ушаков Е.В. Введение в философию и методологию науки / Е.В. Ушаков. М.: Экзамен, 2005.
- 15. Философия: хрестоматия. М.: РАГС, 2006.
- 16. Философия: энциклопедический словарь / Под ред. А.А. Ивина. М.: Гардарики, 2009.
- 17. Философский энциклопедический словарь. М.: Инфра-М, 2009.
- 18. Хрестоматия по западной философии. Античность, Средние века, Возрождение. М.: АСТ, 2008.
- 19. Хрестоматия по философии. М.: Проспект, 2008.

9. Материально-техническое обеспечение дисциплины

Учебно-лабораторное оборудование:

- аудитория, оснащенная компьютерами и оборудованием для демонстрации презентаций;
 - учебные пособия для организации самостоятельной работы обучающихся;
- контрольно-измерительные материалы для проведения текущей и промежуточной аттестации.
 - презентации, фрагменты фильмов.

Автор-составитель рабочей программы дисциплины: д.филос.н., профессор Э.А. Самбуров